OBJECTIVE Low dose of actinomycin D(LDAct D)was reported as a potent P53 activator and protected normal proliferating cells during anti-mitotic chemotherapy.However,the mechanism of LDAct D on P53 activation is still ...OBJECTIVE Low dose of actinomycin D(LDAct D)was reported as a potent P53 activator and protected normal proliferating cells during anti-mitotic chemotherapy.However,the mechanism of LDAct D on P53 activation is still undetermined.In this study,the mechanism of LDAct D on the synergistic antitumor effect for cisplatin(CDDP)and P53 reactivation in KB cells was studied in detail.METHODS Cell viability was determined by MTT and LDH release.Apoptosis was determined by AnnexinⅤ-FITC/PI staining.Mitochondrial membrane potential(MMP)was detected by JC-1 stain-ing.Expression of P53,PARP,BAX,BCL-XL,PUMA,MDM2 and MDMX was detected by Western blotting(WB)and/or immunofluorescence(IF).P53-MDM2 complex was detected by ELISA.Molecular docking of receptor MDM2 and MDMX with actinomycin D(ACTD)was analyzed by Discovery Studio.RESULTS Compared with CDDP alone,P53 expression and the cytotoxicity on KB cells was significantly increased by the combination therapy.P53 regulatory proteins were increased while MMP was decreased.Meanwhile,knockdown of PUMA(P53 upregulated modulator of apoptosis)efficiently blocked the synergistic effect of LDAct D to CDDP.P53 activation was found to be accompanied with the increase of MDMX but not MDM2.Meanwhile,MDM2-P53 complex in KB cells was significantly decreased by LDAct D.Docking of both receptor MDM2 and MDMX with ACTD exhibited well established bonds with nearby amino acid residues.CONCLUSION LDAct D was probably an inhibitor of both MDM2 and MDMX.The synergistic effects of LDAct D for CDDP on KB cells depended on its effect on reactivating P53 and PUMA mediated mitochondrial apoptosis.展开更多
基于Hill动力学与Michaelis-Menten方程,建立理论模型研究发状分裂相关增强子1(Hairy and enhancer of split 1,Hes1)调控蛋白激酶B(Protein Kinase B,AKT)-鼠双微体2(Murine Double Minute2,MDM2)-抗癌基因p53(p53)-第10号染色体缺失...基于Hill动力学与Michaelis-Menten方程,建立理论模型研究发状分裂相关增强子1(Hairy and enhancer of split 1,Hes1)调控蛋白激酶B(Protein Kinase B,AKT)-鼠双微体2(Murine Double Minute2,MDM2)-抗癌基因p53(p53)-第10号染色体缺失的磷酸酶及张力蛋白同源的基因(Phosphatase and tensin homolog deleted on chromosome ten,PTEN)通路的一种物理机制.研究发现,Hes1通过与PTEN结合抑制PTEN表达,并调控AKT信号.表明了Hes1蛋白的合成,以及Hes1与PTEN相互作用调控AKT-MDM2-p53-PTEN通路信号,将会有效地控制细胞结果.Hes1作为AKT-MDM2-p53-PTEN信号通路中上游调节的重要因素,还可以在一定程度上通过影响p53蛋白功能,改变p53对肿瘤的抑制性.理论结果可用于预测Notch通路信号异常诱导的致癌性,并进一步揭示了Notch信号通路影响细胞AKT-MDM2-p53-PTEN通路的激活机制.展开更多
基金The project supported by Ministry of Science and Technology Project of International Cooperation(2011DFR31240)National Science and Technology Major Projects″Major Drug Discovery(″2012ZX09301002001001)
文摘OBJECTIVE Low dose of actinomycin D(LDAct D)was reported as a potent P53 activator and protected normal proliferating cells during anti-mitotic chemotherapy.However,the mechanism of LDAct D on P53 activation is still undetermined.In this study,the mechanism of LDAct D on the synergistic antitumor effect for cisplatin(CDDP)and P53 reactivation in KB cells was studied in detail.METHODS Cell viability was determined by MTT and LDH release.Apoptosis was determined by AnnexinⅤ-FITC/PI staining.Mitochondrial membrane potential(MMP)was detected by JC-1 stain-ing.Expression of P53,PARP,BAX,BCL-XL,PUMA,MDM2 and MDMX was detected by Western blotting(WB)and/or immunofluorescence(IF).P53-MDM2 complex was detected by ELISA.Molecular docking of receptor MDM2 and MDMX with actinomycin D(ACTD)was analyzed by Discovery Studio.RESULTS Compared with CDDP alone,P53 expression and the cytotoxicity on KB cells was significantly increased by the combination therapy.P53 regulatory proteins were increased while MMP was decreased.Meanwhile,knockdown of PUMA(P53 upregulated modulator of apoptosis)efficiently blocked the synergistic effect of LDAct D to CDDP.P53 activation was found to be accompanied with the increase of MDMX but not MDM2.Meanwhile,MDM2-P53 complex in KB cells was significantly decreased by LDAct D.Docking of both receptor MDM2 and MDMX with ACTD exhibited well established bonds with nearby amino acid residues.CONCLUSION LDAct D was probably an inhibitor of both MDM2 and MDMX.The synergistic effects of LDAct D for CDDP on KB cells depended on its effect on reactivating P53 and PUMA mediated mitochondrial apoptosis.
文摘基于Hill动力学与Michaelis-Menten方程,建立理论模型研究发状分裂相关增强子1(Hairy and enhancer of split 1,Hes1)调控蛋白激酶B(Protein Kinase B,AKT)-鼠双微体2(Murine Double Minute2,MDM2)-抗癌基因p53(p53)-第10号染色体缺失的磷酸酶及张力蛋白同源的基因(Phosphatase and tensin homolog deleted on chromosome ten,PTEN)通路的一种物理机制.研究发现,Hes1通过与PTEN结合抑制PTEN表达,并调控AKT信号.表明了Hes1蛋白的合成,以及Hes1与PTEN相互作用调控AKT-MDM2-p53-PTEN通路信号,将会有效地控制细胞结果.Hes1作为AKT-MDM2-p53-PTEN信号通路中上游调节的重要因素,还可以在一定程度上通过影响p53蛋白功能,改变p53对肿瘤的抑制性.理论结果可用于预测Notch通路信号异常诱导的致癌性,并进一步揭示了Notch信号通路影响细胞AKT-MDM2-p53-PTEN通路的激活机制.