The study was undertaken to assess the genetic effect of quantitative trait loci (QTLs) conferring heat tolerance at flowering stage in rice. A population consisting of 279 F2 individuals from the cross between 996,...The study was undertaken to assess the genetic effect of quantitative trait loci (QTLs) conferring heat tolerance at flowering stage in rice. A population consisting of 279 F2 individuals from the cross between 996, a heat tolerant cultivar and 4628, a heat-sensitive cultivar, was analyzed for their segregation pattern of the difference of seed set rate under optimal temperature condition and high temperature condition. The difference of seed set rate under optimal temperature condition and high temperature condition showed normal distribution, indicating the polygenic control over the trait. To identify main effect of QTL for heat tolerance, the parents were surveyed with 200 primer pairs of simple sequence repeats (SSR). The parental survey revealed 30% polymorphism between parents. In order to detect the main QTL association with heat tolerance, a strategy of combining the DNA pooling from selected segregants and genotyping was adopted. The association of putative markers identified based on DNA pooling from selected segregants was established by single marker analysis (SMA). The results of SMA revealed that SSR markers, RM3735 on chromosome 4 and RM3586 on chromosome 3 showed significant association with heat tolerance respectively, accounted for 17 and 3% of the total variation respectively. The heat tolerance during flowering stage in rice was controlled by multiple gene. The SSR markers, RM3735 on chromosome 4 and RM3586 on chromosome 3 showed significant association with heat tolerance respectively, accounted for 17 and 3% of the total variation respectively. The two genetic loci, especially for RM3735 on chromosome 4, can be used in marker-assistant-selected method in heat tolerance breeding in rice.展开更多
Five super hybrid rice combinations, i.e. HYS-1/R105, Pei'ai 64S/E32, Liangyoupeijiu (Pei'ai 64S/9311), 88S/0293, and J23A/Q611, and their parental lines were tested by means of SSR analysis. A total of 144 SS...Five super hybrid rice combinations, i.e. HYS-1/R105, Pei'ai 64S/E32, Liangyoupeijiu (Pei'ai 64S/9311), 88S/0293, and J23A/Q611, and their parental lines were tested by means of SSR analysis. A total of 144 SSR primer pairs distributed on 12 rice chromosomes were used, out of which 47 detected polymorphism among the tested rice lines. Among all these primers, RM337 and RM154 produced polymorphic patterns in four or more of the tested experimental materials respectively, and they could distinguish among most rice genotypes tested. Twenty-four primer pairs, two on each rice chromosome, were selected to make a reference SSR marker-based fingerprinting for the rice lines. For most of the primer pairs, F1 hybrids mainly showed complementary pattern of both parents, which could be very useful to distinguish the F1 from its parental lines. In addition, 5 primer pairs were selected as special primer pairs for five hybrid rice combinations respectively. By combining the rapid, simple method on DNA extraction, it is suggested that SSR technique has wide prospective in variety authentication and purity identification.展开更多
To select highly informative microsatellite markers (SSRs) and establish a useful genetic SSR framework for rice genotyping, 15 rice (Oryza sativa L.) cultivars including six indica varieties and nine japonica var...To select highly informative microsatellite markers (SSRs) and establish a useful genetic SSR framework for rice genotyping, 15 rice (Oryza sativa L.) cultivars including six indica varieties and nine japonica varieties were used to analyze the polymorphism information content (PIC) value of 489 SSR markers. A total of 1 296 alleles were detected by 405 polymorphic markers with an average of 3.2 per locus. The PIC value of each chromosome was ranged from 0.4039 (chromosome 2) to 0.5840 (chromosome 11). Among the two rice subspecies, indica (0.3685-0.4952) gave a higher PIC value than japonica (0.1326-0.3164) and displayed a higher genetic diversity. Genetic diversity of indica was high on chromosome 12 (0.4952) and low on chromosome 8 (0.3685), while that for japonica was high on chromosome 11 (0.3164) and low on chromosome 2 (0.1326). A SSR framework including 141 highly informative markers for genotyping was selected from 199 SSR markers (PIC〉0.50). Ninety-three SSR markers distributed on 12 chromosomes were found to be related to indica-japonica differentiation. Of these 93 pairs of SSR primers, 17 pairs were considered as core primers (all the japonica varieties have the same specific alleles, while the indica varieties have another specific alleles), 48 pairs as the second classic primers (all the japonica or indica varieties have the same specific alleles, while the indica or japanica varieties have two or more other specific alleles ) and 28 pairs as the third classic primers (all the japonica and indica varieties have two or more alleles, but the specific alleles are different between japonica and indica). Thirty-two SSR markers were selected to be highly informative and useful for genetic diversity analysis of japonica varieties. This work provides a lot of useful information of SSR markers for rice breeding programs, especially for genotyping, diversity analysis and genetic mapping.展开更多
S-a, S-b and S-c are three loci for F1 pollen sterility in cultivated rice (Oryza sativa L.). Taichung 65 (T65) is all Sj/Sj at these three loci, while its F1 pollen sterile near-isogenic lines, TISL2 (S-b), TIS...S-a, S-b and S-c are three loci for F1 pollen sterility in cultivated rice (Oryza sativa L.). Taichung 65 (T65) is all Sj/Sj at these three loci, while its F1 pollen sterile near-isogenic lines, TISL2 (S-b), TISL4 (S-a) and TISL5 (S-c) is Sj/Sj according to their respective sterility locus. Using SSR molecular marker to detect the segregation of the allele Si and Sj in pollen calli population induced from different hybrid F1, which have different pollen sterility locus, showed that the segregation of allele Si and Sj was distorted. The distorted direction of pollen calli population in vitro was not the same as F2 population in vivo. The quantities of pollen callus carrying Sj were much more than that of carrying Siat S-a and S-c locus, the ratio of Si and Sj were 1:4.81 and 1:1.96 respectively. But the opposite tendency was observed at S-b locus, the ratio of Si and Sj being 1:0.35. At the same time, all these results were undisturbed by either culture medium or culture period.展开更多
[Objective] This study aimed to construct DNA fingerprint for hybrid rice cultivars those have been approved by Hunan Province. [Method] The primers which produced polymorphic and bright DNA bands were selected to con...[Objective] This study aimed to construct DNA fingerprint for hybrid rice cultivars those have been approved by Hunan Province. [Method] The primers which produced polymorphic and bright DNA bands were selected to construct the DNA molecular fingerprint map for 77 major hybrid rice cultivars approved by Hunan Province. [ Result] A total of 48 SSR primers were selected. Every cultivar had its unique fingerprint map so that the obtained data could identify differ- ent hybrid rice cultivars. [ Conclusion] This study made great contributions to the perfection of hybrid rice germplasm identification.展开更多
The genetic diversity of 50 parents or improved lines of two-line medium Indica hybrid rice were analyzed based on 48 pairs of SSR markers. The results showed that the clustering results were highly accordant with the...The genetic diversity of 50 parents or improved lines of two-line medium Indica hybrid rice were analyzed based on 48 pairs of SSR markers. The results showed that the clustering results were highly accordant with the parental pedigree information of the tested materials. The male sterile lines and the restoring lines were clustered into 2 distinct groups (Ⅰ and Ⅱ), respectively. There were no significant difference in intra-group average genetic distances (GD) between the 2 groups. Most of the male sterile lines from Hunan Longping High-tech Seed Science Research Institute Co., Ltd. were grouped into a single subgroup (Ⅰ-4) under the male sterile group with the largest average GD compared with the rest male sterile subgroups. Huazhan derived lines and Guangzhou inbred lines were founded to be independent of 9311 and its derivatives or closely-related lines. Meanwhile, they have obviously been differentiated into 2 subgroups (Ⅱ-2 and Ⅱ-3). The lines derived from Huazhan (or genetic closely related lines) showed a genetic homogenization phenomenon. Therefore, the Huazhan-derived lines should be further improved by the utilization of germplasms with good quality, high resistance and wide adaptability from Southern China to widen the GD between Huazhan derived lines and the male sterile subgroup developed by Hunan Longping High-tech Seed Science Research Institute Co., Ltd., so as to further promote the heterosis level between the groups.展开更多
16 SSR (Simple sequence repeats) primers of functional genes in rice were used to detect genetic diversity among 23 accessions of rice germplasm from 5 countries in the world. The average number of alleles per SSR loc...16 SSR (Simple sequence repeats) primers of functional genes in rice were used to detect genetic diversity among 23 accessions of rice germplasm from 5 countries in the world. The average number of alleles per SSR locus was 5.2 with a range from 2 to 10. Genetic similarities among the 23 rice accessions ranged from 0.13 to 0.64. UPGMA cluster analysis showed that the 23 rice accessions could be classified into two distinct classes at similarities with a coefficient of 0.13. The Japonicas from Brazil, Japan and China were classified into Class I, along with upland rice from Brazil. The Indicas from Pakistan and Korea were classified into Class II. Consequently, the function of genes SSR markers could be used as a useful tool for measuring genetic diversity, assigning rice to geographical distribution, ecotype, and pedigree relationship.展开更多
Different results of seed purity identification for Gangyou 158, Ⅱ You 808, Wuyou 308 and Tianfengyou 316 were obtained using different SSR primers in our early work. To find out the reasons, the four hybrid combinat...Different results of seed purity identification for Gangyou 158, Ⅱ You 808, Wuyou 308 and Tianfengyou 316 were obtained using different SSR primers in our early work. To find out the reasons, the four hybrid combinations were grown in field to identify their purity according to their phenotypic traits. Then, the results of field identification were compared with that of laboratory tests using different SSR primers. The comparison revealed that only sterile lines (female parent) were distin- guished from true hybrids using the primers RM208, RM264, RM242 and RM164 for the purity identification of Gangyou 158, II You 808, Wuyou 308 and Tianfengyou 316, so the results were higher than that of field identification. In contrast, the primers RM341, RM297, RM21 and RM110 were able to distinguish not only the sterile plants but also the cross-pollinated ones from the true hybrids of Gangyou 158,Ⅱ You 808, Wuyou 308 and Tianfengyou 316, and the results of purity identifi- cation using them were close that of field identification, in summary, several pairs of primers should be used for the purity identification of rice hybrids to distinguish all the off-type plants and thus improve the accuracy.展开更多
Rice is one of the most widely cultivated cereals in the world, and its aroma is increasingly in demand. With the advancement of research, a major rice flavor gene has been identified on rice chromosome 8. It encodes ...Rice is one of the most widely cultivated cereals in the world, and its aroma is increasingly in demand. With the advancement of research, a major rice flavor gene has been identified on rice chromosome 8. It encodes non-functional betaine aldehyde dehydrogenase leading to the accumulation of 2-acetyl-1-pyrroline which is the major olfactory compound that confers the fragrant character to rice. The aroma of rice is considered a special trait of enormous economic importance that determines the prime price in world trade. To satisfy the needs of the population and reduce rice imports into Benin, we conducted this study to identify aromatic rice accessions grown in Benin. Seventy-two rice accessions collected across Benin were PCR amplified with three SSR markers RM 7049, Aro 7, and RM 223, linked to the fgr (fragrance of rice) aroma gene. Molecular analysis revealed that 12 of the 72 accessions, namely Bagou 19, Bagou 22, Tchaka 34, Foun 15, Tchaka 41, Nana 32, Kan 61, Kung 69, Kung 67, Bagou 20, Agbab 101 and Koum 55 possess the fgr gene and can be considered as aromatic rice accessions. A sensory phenotypic test using KOH was carried out on rice accessions carrying fgr gene. Of the twelve positives, only one had the smell of aromatic rice, like the Azucena control. These results show that Benin also has aromatic rice varieties that can be sold on national and international markets.展开更多
[ Objective] The genetic diversity of the local cultivated aromatic rice and non-aromatic rice in Yunnan Province were compared to provide further genetic resources for breeding practice. [Method] Genetic diversity of...[ Objective] The genetic diversity of the local cultivated aromatic rice and non-aromatic rice in Yunnan Province were compared to provide further genetic resources for breeding practice. [Method] Genetic diversity of 10 aromatic rice and 45 non-aromatic rice were analyzed by 64 SSR primers covered on 12 rice chromosomes. [ Result] Per locus 5.44 and 7.98 alleles in average were detected, ranging from 2 to 12 and from 2 to 17 in aromatic and non-aromatic rice, respectively. Average genetic multiplicity index(Hs) was 0.46 and 0.67 respectively. The average polymorphism information content (PIC) was 0.43 and 0.58 in aromatic and non-aromatic rice respectively. [ Conclusion] The results indicated that genetic diversity was higher in non-aromatic rice than in aromatic rice.展开更多
A green-revertible albino mutant-Qiufeng M was found from the japonica rice (Oryza sativa L. ssp. japonica) Qiufeng in the field. The first three leaves of the mutant were albino with some green. The leaf color beca...A green-revertible albino mutant-Qiufeng M was found from the japonica rice (Oryza sativa L. ssp. japonica) Qiufeng in the field. The first three leaves of the mutant were albino with some green. The leaf color became pale green since the fourth leaf and the glume had the same phenomenon as the first three leaves. The measuring data of the pigment content confirmed the visually observed results. It truly had a remarkable changing process in the leaf color in Qiufeng M. Comparison of the main agronomic characters between Qiufeng and Qiufeng M indicated that the neck length and grain weight showed significant difference at the 1% level, and other characters were not different. Genetic analysis showed that the green-revertible albino trait was controlled by a single recessive nucleic gene. Using 209 recessive mutant individuals in the F2 population derived from the cross Pei'ai 64S × Qiufeng M, a gene, tentatively named gra(t), was located between the SSR markers of RM475 and RM2-22 on the long arm of chromosome 2. The genetic distance were 17.3 cM and 2.9 cM respectively.展开更多
基金supported by the National Natural Science Foundation of China (30500315)Transformation of Agricultural Scientific and Technological Achievements Program from the Ministry of Science and Technology of China (05EFN214300193)Educational Foundation of Hunan Province,China (07C360)
文摘The study was undertaken to assess the genetic effect of quantitative trait loci (QTLs) conferring heat tolerance at flowering stage in rice. A population consisting of 279 F2 individuals from the cross between 996, a heat tolerant cultivar and 4628, a heat-sensitive cultivar, was analyzed for their segregation pattern of the difference of seed set rate under optimal temperature condition and high temperature condition. The difference of seed set rate under optimal temperature condition and high temperature condition showed normal distribution, indicating the polygenic control over the trait. To identify main effect of QTL for heat tolerance, the parents were surveyed with 200 primer pairs of simple sequence repeats (SSR). The parental survey revealed 30% polymorphism between parents. In order to detect the main QTL association with heat tolerance, a strategy of combining the DNA pooling from selected segregants and genotyping was adopted. The association of putative markers identified based on DNA pooling from selected segregants was established by single marker analysis (SMA). The results of SMA revealed that SSR markers, RM3735 on chromosome 4 and RM3586 on chromosome 3 showed significant association with heat tolerance respectively, accounted for 17 and 3% of the total variation respectively. The heat tolerance during flowering stage in rice was controlled by multiple gene. The SSR markers, RM3735 on chromosome 4 and RM3586 on chromosome 3 showed significant association with heat tolerance respectively, accounted for 17 and 3% of the total variation respectively. The two genetic loci, especially for RM3735 on chromosome 4, can be used in marker-assistant-selected method in heat tolerance breeding in rice.
文摘Five super hybrid rice combinations, i.e. HYS-1/R105, Pei'ai 64S/E32, Liangyoupeijiu (Pei'ai 64S/9311), 88S/0293, and J23A/Q611, and their parental lines were tested by means of SSR analysis. A total of 144 SSR primer pairs distributed on 12 rice chromosomes were used, out of which 47 detected polymorphism among the tested rice lines. Among all these primers, RM337 and RM154 produced polymorphic patterns in four or more of the tested experimental materials respectively, and they could distinguish among most rice genotypes tested. Twenty-four primer pairs, two on each rice chromosome, were selected to make a reference SSR marker-based fingerprinting for the rice lines. For most of the primer pairs, F1 hybrids mainly showed complementary pattern of both parents, which could be very useful to distinguish the F1 from its parental lines. In addition, 5 primer pairs were selected as special primer pairs for five hybrid rice combinations respectively. By combining the rapid, simple method on DNA extraction, it is suggested that SSR technique has wide prospective in variety authentication and purity identification.
基金supported by the National Natural Science Foundation of China (30871468)the National Basic Research Program of China (973 Program,2009CB126007)
文摘To select highly informative microsatellite markers (SSRs) and establish a useful genetic SSR framework for rice genotyping, 15 rice (Oryza sativa L.) cultivars including six indica varieties and nine japonica varieties were used to analyze the polymorphism information content (PIC) value of 489 SSR markers. A total of 1 296 alleles were detected by 405 polymorphic markers with an average of 3.2 per locus. The PIC value of each chromosome was ranged from 0.4039 (chromosome 2) to 0.5840 (chromosome 11). Among the two rice subspecies, indica (0.3685-0.4952) gave a higher PIC value than japonica (0.1326-0.3164) and displayed a higher genetic diversity. Genetic diversity of indica was high on chromosome 12 (0.4952) and low on chromosome 8 (0.3685), while that for japonica was high on chromosome 11 (0.3164) and low on chromosome 2 (0.1326). A SSR framework including 141 highly informative markers for genotyping was selected from 199 SSR markers (PIC〉0.50). Ninety-three SSR markers distributed on 12 chromosomes were found to be related to indica-japonica differentiation. Of these 93 pairs of SSR primers, 17 pairs were considered as core primers (all the japonica varieties have the same specific alleles, while the indica varieties have another specific alleles), 48 pairs as the second classic primers (all the japonica or indica varieties have the same specific alleles, while the indica or japanica varieties have two or more other specific alleles ) and 28 pairs as the third classic primers (all the japonica and indica varieties have two or more alleles, but the specific alleles are different between japonica and indica). Thirty-two SSR markers were selected to be highly informative and useful for genetic diversity analysis of japonica varieties. This work provides a lot of useful information of SSR markers for rice breeding programs, especially for genotyping, diversity analysis and genetic mapping.
基金This work was supported by the National Natural Science Foundation of China(39970048)Guangdong Provincial Natural Science Foundation(990707)the Fok Ying Tung Education Foundation(71021).
文摘S-a, S-b and S-c are three loci for F1 pollen sterility in cultivated rice (Oryza sativa L.). Taichung 65 (T65) is all Sj/Sj at these three loci, while its F1 pollen sterile near-isogenic lines, TISL2 (S-b), TISL4 (S-a) and TISL5 (S-c) is Sj/Sj according to their respective sterility locus. Using SSR molecular marker to detect the segregation of the allele Si and Sj in pollen calli population induced from different hybrid F1, which have different pollen sterility locus, showed that the segregation of allele Si and Sj was distorted. The distorted direction of pollen calli population in vitro was not the same as F2 population in vivo. The quantities of pollen callus carrying Sj were much more than that of carrying Siat S-a and S-c locus, the ratio of Si and Sj were 1:4.81 and 1:1.96 respectively. But the opposite tendency was observed at S-b locus, the ratio of Si and Sj being 1:0.35. At the same time, all these results were undisturbed by either culture medium or culture period.
基金Supported by Agricultural Science and Technology Achievements Transformation Fund of Ministry of Science and Technology (2007GB2D200225)Master Degree Paper Innovation Fund of Central South University (2010SSXt045)
文摘[Objective] This study aimed to construct DNA fingerprint for hybrid rice cultivars those have been approved by Hunan Province. [Method] The primers which produced polymorphic and bright DNA bands were selected to construct the DNA molecular fingerprint map for 77 major hybrid rice cultivars approved by Hunan Province. [ Result] A total of 48 SSR primers were selected. Every cultivar had its unique fingerprint map so that the obtained data could identify differ- ent hybrid rice cultivars. [ Conclusion] This study made great contributions to the perfection of hybrid rice germplasm identification.
基金Supported by Open Project of State Key Laboratory of Hybrid Rice(2015KF05)China Postdoctoral Science Foundation(2015M572261)National Key Research and Development Program(2016YFD0101801)~~
文摘The genetic diversity of 50 parents or improved lines of two-line medium Indica hybrid rice were analyzed based on 48 pairs of SSR markers. The results showed that the clustering results were highly accordant with the parental pedigree information of the tested materials. The male sterile lines and the restoring lines were clustered into 2 distinct groups (Ⅰ and Ⅱ), respectively. There were no significant difference in intra-group average genetic distances (GD) between the 2 groups. Most of the male sterile lines from Hunan Longping High-tech Seed Science Research Institute Co., Ltd. were grouped into a single subgroup (Ⅰ-4) under the male sterile group with the largest average GD compared with the rest male sterile subgroups. Huazhan derived lines and Guangzhou inbred lines were founded to be independent of 9311 and its derivatives or closely-related lines. Meanwhile, they have obviously been differentiated into 2 subgroups (Ⅱ-2 and Ⅱ-3). The lines derived from Huazhan (or genetic closely related lines) showed a genetic homogenization phenomenon. Therefore, the Huazhan-derived lines should be further improved by the utilization of germplasms with good quality, high resistance and wide adaptability from Southern China to widen the GD between Huazhan derived lines and the male sterile subgroup developed by Hunan Longping High-tech Seed Science Research Institute Co., Ltd., so as to further promote the heterosis level between the groups.
文摘16 SSR (Simple sequence repeats) primers of functional genes in rice were used to detect genetic diversity among 23 accessions of rice germplasm from 5 countries in the world. The average number of alleles per SSR locus was 5.2 with a range from 2 to 10. Genetic similarities among the 23 rice accessions ranged from 0.13 to 0.64. UPGMA cluster analysis showed that the 23 rice accessions could be classified into two distinct classes at similarities with a coefficient of 0.13. The Japonicas from Brazil, Japan and China were classified into Class I, along with upland rice from Brazil. The Indicas from Pakistan and Korea were classified into Class II. Consequently, the function of genes SSR markers could be used as a useful tool for measuring genetic diversity, assigning rice to geographical distribution, ecotype, and pedigree relationship.
基金Supported by Special Fund for the Screening and Breeding of Low-Cd-accumulating Crop Varieties~~
文摘Different results of seed purity identification for Gangyou 158, Ⅱ You 808, Wuyou 308 and Tianfengyou 316 were obtained using different SSR primers in our early work. To find out the reasons, the four hybrid combinations were grown in field to identify their purity according to their phenotypic traits. Then, the results of field identification were compared with that of laboratory tests using different SSR primers. The comparison revealed that only sterile lines (female parent) were distin- guished from true hybrids using the primers RM208, RM264, RM242 and RM164 for the purity identification of Gangyou 158, II You 808, Wuyou 308 and Tianfengyou 316, so the results were higher than that of field identification. In contrast, the primers RM341, RM297, RM21 and RM110 were able to distinguish not only the sterile plants but also the cross-pollinated ones from the true hybrids of Gangyou 158,Ⅱ You 808, Wuyou 308 and Tianfengyou 316, and the results of purity identifi- cation using them were close that of field identification, in summary, several pairs of primers should be used for the purity identification of rice hybrids to distinguish all the off-type plants and thus improve the accuracy.
文摘Rice is one of the most widely cultivated cereals in the world, and its aroma is increasingly in demand. With the advancement of research, a major rice flavor gene has been identified on rice chromosome 8. It encodes non-functional betaine aldehyde dehydrogenase leading to the accumulation of 2-acetyl-1-pyrroline which is the major olfactory compound that confers the fragrant character to rice. The aroma of rice is considered a special trait of enormous economic importance that determines the prime price in world trade. To satisfy the needs of the population and reduce rice imports into Benin, we conducted this study to identify aromatic rice accessions grown in Benin. Seventy-two rice accessions collected across Benin were PCR amplified with three SSR markers RM 7049, Aro 7, and RM 223, linked to the fgr (fragrance of rice) aroma gene. Molecular analysis revealed that 12 of the 72 accessions, namely Bagou 19, Bagou 22, Tchaka 34, Foun 15, Tchaka 41, Nana 32, Kan 61, Kung 69, Kung 67, Bagou 20, Agbab 101 and Koum 55 possess the fgr gene and can be considered as aromatic rice accessions. A sensory phenotypic test using KOH was carried out on rice accessions carrying fgr gene. Of the twelve positives, only one had the smell of aromatic rice, like the Azucena control. These results show that Benin also has aromatic rice varieties that can be sold on national and international markets.
基金Supported by the General Programs of the National Natural ScienceFoundation of China(30460019)Key Technologies R&D Program ofYunnan Province(2006NG34,2008C004Z)Cooperative Program Between Yunnan Academy of Agricultural Sciences (YAAS) and RDA of Korea~~
文摘[ Objective] The genetic diversity of the local cultivated aromatic rice and non-aromatic rice in Yunnan Province were compared to provide further genetic resources for breeding practice. [Method] Genetic diversity of 10 aromatic rice and 45 non-aromatic rice were analyzed by 64 SSR primers covered on 12 rice chromosomes. [ Result] Per locus 5.44 and 7.98 alleles in average were detected, ranging from 2 to 12 and from 2 to 17 in aromatic and non-aromatic rice, respectively. Average genetic multiplicity index(Hs) was 0.46 and 0.67 respectively. The average polymorphism information content (PIC) was 0.43 and 0.58 in aromatic and non-aromatic rice respectively. [ Conclusion] The results indicated that genetic diversity was higher in non-aromatic rice than in aromatic rice.
基金This work was supported by the Major Research Program on Technology of Agricultural Structure Adjustment (No. 05-01-05B)Jiangsu High Technology Program (No. BG2004301, BG2004304, and BG2005301).
文摘A green-revertible albino mutant-Qiufeng M was found from the japonica rice (Oryza sativa L. ssp. japonica) Qiufeng in the field. The first three leaves of the mutant were albino with some green. The leaf color became pale green since the fourth leaf and the glume had the same phenomenon as the first three leaves. The measuring data of the pigment content confirmed the visually observed results. It truly had a remarkable changing process in the leaf color in Qiufeng M. Comparison of the main agronomic characters between Qiufeng and Qiufeng M indicated that the neck length and grain weight showed significant difference at the 1% level, and other characters were not different. Genetic analysis showed that the green-revertible albino trait was controlled by a single recessive nucleic gene. Using 209 recessive mutant individuals in the F2 population derived from the cross Pei'ai 64S × Qiufeng M, a gene, tentatively named gra(t), was located between the SSR markers of RM475 and RM2-22 on the long arm of chromosome 2. The genetic distance were 17.3 cM and 2.9 cM respectively.