[Objective] This study was to elucidate the cellular and molecular mechanism of the development of heteromorphic leaves of Populus euphratica Oliv. [Method] By employing SDS-PAGE and 2-demensional electrophoresis (2-D...[Objective] This study was to elucidate the cellular and molecular mechanism of the development of heteromorphic leaves of Populus euphratica Oliv. [Method] By employing SDS-PAGE and 2-demensional electrophoresis (2-DE) techniques,proteins in various heteromorphic leaves from the same adult tree of P. euphratica were isolated and separated to the electrophoresis technique suitable for the separation and analysis of proteins in leaves of P. euphratica tree. [Results] There were significant differences in the expressions of proteins in various heteromorphic leaves of P. euphratica tree. SDS-PAGE pattern showed that bands of proteins with molecular weight of 57.2,13.2,30.2,23.9 and 33.3 kDa were remarkably different. 2-D electrophoresis pattern presented that proteins in leaves of P. euphratica tree mainly belong to acidic proteins distributed at pH value of 5.0-6.5 and with molecular weight of 20-40 kDa; totally 73 different protein spots were observed,of which 51 were up expressed and other 22 were down expressed in the serrated ovate leaves. [Conclusion] Based on these results,we speculate that regulated gene expression in leaves of P. euphratica tree results in the generation of different shapes of leaves,in order to adapt to the surroundings better.展开更多
A superoxide dismutase was purified from Enteromorpha linza using a simple and safe procedure, which comprised phosphate buffer extraction, ammonium sulphate precipitation, ion exchange chromatography on Q-sepharose c...A superoxide dismutase was purified from Enteromorpha linza using a simple and safe procedure, which comprised phosphate buffer extraction, ammonium sulphate precipitation, ion exchange chromatography on Q-sepharose column, and gel filtration chromatography on Superdex 200 10/300GL. The E. linza superoxide dismutase (E/SOD) was purified 103.6-fold, and a yield of 19.1% and a specific activity of 1 750 U/rag protein were obtained. The SDS-PAGE exhibited E/SOD a single band near 23 kDa and the gel filtration study showed E/SOD's molecular weight is near 46 kDa in nondenatured condition, indicating it's a homodimeric protein. E/SOD is an iron-cofactored superoxide dismutase (Fe-SOD) because it was inhibited by hydrogen peroxide, insensitive to potassium cyanide. The optimal temperature for its maximal enzyme activity was 35℃, and it still had 29.8% relative activity at 0℃, then E/SOD can be classified as a cold-adapted enzyme. E/SOD was stable when temperature was below 40℃ or the pH was within the range of 5 10. The first 11 N-terminal amino acids orE/SOD were ALELKAPPYEL, comparison of its N-terminal sequence with other Fe-SOD N-terminal sequences at the same position suggests it is possibly a chloroplastic Fe-SOD.展开更多
文摘[Objective] This study was to elucidate the cellular and molecular mechanism of the development of heteromorphic leaves of Populus euphratica Oliv. [Method] By employing SDS-PAGE and 2-demensional electrophoresis (2-DE) techniques,proteins in various heteromorphic leaves from the same adult tree of P. euphratica were isolated and separated to the electrophoresis technique suitable for the separation and analysis of proteins in leaves of P. euphratica tree. [Results] There were significant differences in the expressions of proteins in various heteromorphic leaves of P. euphratica tree. SDS-PAGE pattern showed that bands of proteins with molecular weight of 57.2,13.2,30.2,23.9 and 33.3 kDa were remarkably different. 2-D electrophoresis pattern presented that proteins in leaves of P. euphratica tree mainly belong to acidic proteins distributed at pH value of 5.0-6.5 and with molecular weight of 20-40 kDa; totally 73 different protein spots were observed,of which 51 were up expressed and other 22 were down expressed in the serrated ovate leaves. [Conclusion] Based on these results,we speculate that regulated gene expression in leaves of P. euphratica tree results in the generation of different shapes of leaves,in order to adapt to the surroundings better.
基金Supported by the National Key Technology R&D Program of China(No.2012BAC07B03)
文摘A superoxide dismutase was purified from Enteromorpha linza using a simple and safe procedure, which comprised phosphate buffer extraction, ammonium sulphate precipitation, ion exchange chromatography on Q-sepharose column, and gel filtration chromatography on Superdex 200 10/300GL. The E. linza superoxide dismutase (E/SOD) was purified 103.6-fold, and a yield of 19.1% and a specific activity of 1 750 U/rag protein were obtained. The SDS-PAGE exhibited E/SOD a single band near 23 kDa and the gel filtration study showed E/SOD's molecular weight is near 46 kDa in nondenatured condition, indicating it's a homodimeric protein. E/SOD is an iron-cofactored superoxide dismutase (Fe-SOD) because it was inhibited by hydrogen peroxide, insensitive to potassium cyanide. The optimal temperature for its maximal enzyme activity was 35℃, and it still had 29.8% relative activity at 0℃, then E/SOD can be classified as a cold-adapted enzyme. E/SOD was stable when temperature was below 40℃ or the pH was within the range of 5 10. The first 11 N-terminal amino acids orE/SOD were ALELKAPPYEL, comparison of its N-terminal sequence with other Fe-SOD N-terminal sequences at the same position suggests it is possibly a chloroplastic Fe-SOD.