A bacteria strain for the degradation of hydrolyzed polyacrylamide (HPAM) was isolated from a curing pot in HPAM distribution station of Daqing Oilfield using Hungate anaerobic technique. The isolate was investigate...A bacteria strain for the degradation of hydrolyzed polyacrylamide (HPAM) was isolated from a curing pot in HPAM distribution station of Daqing Oilfield using Hungate anaerobic technique. The isolate was investigated from morphological, physiological, biochemical and molecular characterization. It is a Gram-negative, shortbacillus, non-spore-forming anaerobic bacteria with an optimum growth at 8.0 pH at 40℃. It can reduce sulfate to I-I2S. Alignment of 16S ribosomal DNA and 16S-23S ribosomal DNA intergenic spacer sequences suggests that this isolate is closely related to the Enterobacter cloacae. The isolate is identified as a new strain belonging to Enterobacter genus, temporarily named as Enterobacter cloacae 17. Analysis results of infrared spectroscopy (IR) show that the bacteria can use HPAM as the only carbon source, change the structure of HPAM polymer surface, and realize the hydrolysis of amide to carboxyl group by hydrolysis mechanism. It can degrade the side chain and change some functional groups, which obviously decreases the viscosity. GC-MS analysis indicates that the determined low-molecular weight degradation products of HPAM are polyacrylamide fragments with duplet bond, epoxy as well as carbonyl group, but most of them are acrylamide oligomer derivatives.展开更多
基金Sponsored by the Country from Branch Fund Significant International Cooperation Item(Grant No.50521140075)
文摘A bacteria strain for the degradation of hydrolyzed polyacrylamide (HPAM) was isolated from a curing pot in HPAM distribution station of Daqing Oilfield using Hungate anaerobic technique. The isolate was investigated from morphological, physiological, biochemical and molecular characterization. It is a Gram-negative, shortbacillus, non-spore-forming anaerobic bacteria with an optimum growth at 8.0 pH at 40℃. It can reduce sulfate to I-I2S. Alignment of 16S ribosomal DNA and 16S-23S ribosomal DNA intergenic spacer sequences suggests that this isolate is closely related to the Enterobacter cloacae. The isolate is identified as a new strain belonging to Enterobacter genus, temporarily named as Enterobacter cloacae 17. Analysis results of infrared spectroscopy (IR) show that the bacteria can use HPAM as the only carbon source, change the structure of HPAM polymer surface, and realize the hydrolysis of amide to carboxyl group by hydrolysis mechanism. It can degrade the side chain and change some functional groups, which obviously decreases the viscosity. GC-MS analysis indicates that the determined low-molecular weight degradation products of HPAM are polyacrylamide fragments with duplet bond, epoxy as well as carbonyl group, but most of them are acrylamide oligomer derivatives.