The nanopore structures in precursors Four carbon-fiber precursors are prepared. They are crucial to the performance of PAN-based carbon fibers are bath-fed filaments (A), water-washing filaments (B) hot-stretchin...The nanopore structures in precursors Four carbon-fiber precursors are prepared. They are crucial to the performance of PAN-based carbon fibers are bath-fed filaments (A), water-washing filaments (B) hot-stretching filaments (C) and drying-densification filaments (D). Synchrotron radiation small angle X-ray scattering is used to probe and compare the nanopore structures of the four fibers. The nanopore size, discrete volume distribution, nanopore orientation degree along the fiber axis and the porosity are obtained. The results demonstrate that the nanopores are mainly formed in the water-washing stage. During the processes of the subsequent production technologies, the slenderness ratio of nanopores and their orientation degree along the fiber axis increase further and simultaneously, the porosity decreases. These results are helpful for improving the performance of the final carbon fibers.展开更多
基金Supported by National Natural Science Foundation of China (10835008)Knowledge Innovation Program of Chinese Academy of Sciences (KJCX3-SYW-N8)Momentous Equipment Program of Chinese Academy of Sciences (YZ200829)
文摘The nanopore structures in precursors Four carbon-fiber precursors are prepared. They are crucial to the performance of PAN-based carbon fibers are bath-fed filaments (A), water-washing filaments (B) hot-stretching filaments (C) and drying-densification filaments (D). Synchrotron radiation small angle X-ray scattering is used to probe and compare the nanopore structures of the four fibers. The nanopore size, discrete volume distribution, nanopore orientation degree along the fiber axis and the porosity are obtained. The results demonstrate that the nanopores are mainly formed in the water-washing stage. During the processes of the subsequent production technologies, the slenderness ratio of nanopores and their orientation degree along the fiber axis increase further and simultaneously, the porosity decreases. These results are helpful for improving the performance of the final carbon fibers.