The surface properties of PAN-based carbon fibers electrochemically treated in aqueous ammonium bicarbonate before and after treatment were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microsc...The surface properties of PAN-based carbon fibers electrochemically treated in aqueous ammonium bicarbonate before and after treatment were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Dynamic Contact Angle Analysis (DCAA). The results of characterization indicated that the oxygen and nitrogen contents in carbon fiber surface were significantly increased by electrochemical treatment, and amide groups was introduced onto it, which was related with the electrolyte. The AFM photographs illustrated that the roughness of the fiber surface was also increased. The wettibality of the fibers was improved after treatment because the surface energy especially the polar part of it was increased.展开更多
The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a fou...The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a four-channel catalytic micro-reactor based on alumina hollow fiber membrane,which uses phase inversion method for structural molding and regulation.Due to the advantages of its carrier,it can achieve lower ignition temperature under low noble metal loading.With Pd/CeO_(2) at a loading rate of 2.3%(mass),the result showed that the reaction ignition temperature is even less than 160℃,which is more than 90℃ lower than the data of commercial ceramic substrates under similar catalyst loading and airspeed conditions.The technology in turn significantly reduces the energy consumption of the reaction.And stability tests were conducted under constant conditions for 1000 h,which proved that this catalytic converter has high catalytic efficiency and stability,providing prospects for the design of innovative catalytic converters in the future.展开更多
Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performa...Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.展开更多
When the PAN-based stabilized fiber(PAN-SF) was converted to the carbon fiber, the effect of some of the carbonizing parameters on the structure and properties of the resulting carbon fibers, such as the molecular str...When the PAN-based stabilized fiber(PAN-SF) was converted to the carbon fiber, the effect of some of the carbonizing parameters on the structure and properties of the resulting carbon fibers, such as the molecular structure development, element contents, morphology and mechanical properties, was discussed. The results show that the carbonizing temperature, the purity of the inert gas and the de-oil pretreatment of the tiber have a great influence on them.展开更多
The deformation resistance effect of polyacrylonitrile (PAN)-based carbon fibers was investigated, and the variatipn law of electrical resistivity under tensile stress was analyzed. The results show that the gauge f...The deformation resistance effect of polyacrylonitrile (PAN)-based carbon fibers was investigated, and the variatipn law of electrical resistivity under tensile stress was analyzed. The results show that the gauge factor (fractional change in resistance per unit strain) of PAN-based carbon fibers is 1.38, which is lower than that of the commonly-used resistance strain gauge. These may due to that the electrical resistivity of carbon fibers decreases under tensile stress. In addition when the carbon fibers are stretched, the change of its resistance is caused by fiber physical dimension and the change of electric resistivity, and mainly caused by the change of physical dimension. The mechanical properties of carbon fiber monofilament were also measured.展开更多
[Objective] The aim was to research the influences of different formulations on oxidation resistance of PVDF hollow fiber membrane.[Method]The immersion precipitation phase inversion method was employed to make castin...[Objective] The aim was to research the influences of different formulations on oxidation resistance of PVDF hollow fiber membrane.[Method]The immersion precipitation phase inversion method was employed to make casting solution with different formulations into hollow fiber membrane.The membrane was immersed in 1% NaClO solution for testing its performance changes.[Result]The membrane made by materials with bigger molecular weight had better oxidation resistance performance;the surfactant tween-80 could increase water flux,but lead to lower rupture intension;Pore-forming agent PEG400 do better than PVP in the oxidation resistance of membrane.[Conclusion]This study will provide a good idea for the development of the PVDF membrane with high oxidation resistance.展开更多
A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characteriz...A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characterized by scanning electron microscope,Fourier transform infrared spectra and contact angle.Cyclic voltammetry and Tafel curves have been used to study its electro-chemical performances.Two identical electrodes in sea water as the electric field sensor will swiftly respond to applied electric field which causes positive and negative ions to move in opposite direction,resulting in a electric potential difference(ΔE).Test result indicates that the offset potential is typically below 1 m V with a drift of 60-170μVd^-1.Typical self noise level is 1.07 nV√Hz^(1/2)@1 Hz.The electric field response indicates that the modified electrode pair shows better response to AC sine signal of amplitude and frequency(5 mV and 1 mHz)respectively than its blank.The electric field response model of the modified electrodes is creatively presented according to its electric double layer capacitance and Faraday pseudo-capacitance.Many advantages of the carbon fiber electric field electrode will make it have potential application prospect.展开更多
Surface of polyacrylonitrile (PAN)-based carbon fibers was modified by electrochemical oxidation. The modification effect on carbon fibers surface was explored using atomic force microscopy (AFM), X-ray photoelectron ...Surface of polyacrylonitrile (PAN)-based carbon fibers was modified by electrochemical oxidation. The modification effect on carbon fibers surface was explored using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Results showed that on the modified surface of carbon fibers, the carbon contents decreased by 9.7% and the oxygen and nitrogen contents increased by 53.8% and 7.5 times, respectively. The surface roughness and the hydroxyl and carbonyl contents also increased. The surface orientation index was reduced by 1.5% which decreased tensile strength of carbon fibers by 8.1%, and the microcrystalline dimension also decreased which increased the active sites of carbon fiber surface by 78%. The physical and chemical properties of carbon fibers surface were modified through the electrochemical oxidative method, which improved the cohesiveness between the fibers and resin matrix and increased the interlaminar shear strength (ILSS) of carbon fibers reinforced epoxy composite (CFRP) over 20%.展开更多
We demonstrate a nanosecond mode-locked erbium-doped fiber laser (EDFL) based on a reduced graphene oxide (RGO) saturable absorber (SA). The RGO SA is prepared by depositing the graphene oxide (GO) on fluorine...We demonstrate a nanosecond mode-locked erbium-doped fiber laser (EDFL) based on a reduced graphene oxide (RGO) saturable absorber (SA). The RGO SA is prepared by depositing the graphene oxide (GO) on fluorine mica through thermal reduction of GO. A scanning electron microscope (SEM), Raman spectrometer, and x-ray photoelectron spec- troscopy (XPS) are adopted to analyze the RGO characteristics. The results show that the reduction degree of graphene oxide is very high. By embedding the RGO SA into the EDFL cavity, a stable mode-locked fiber laser is achieved with a central wavelength of 1567.29 nm and repetition rate of 12.66 MHz. The maximum output power and the minimum pulse duration are measured to be 18.22 mW and 1.38 ns respectively. As far as we know, the maximum output power of 18.22 mW is higher than those of other nanosecond mode-locked oscillators reported. Such a nanosecond pulse duration and megahertz repetition rate make this mode-locked erbium-doped fiber laser a suitable seed oscillator for high-power applications and chirped pulse amplifications.展开更多
A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber f...A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber ferule in the laser cavity. It shows 7% modulation depth with 71 MW/cm2 saturation intensity. By incorporating the SA inside the EDFL cavity with managed intra-cavity dispersion, ultrashort soliton pulses are successfully generated with a full width at half maximum of 3.14 ps. The laser operated at central wavelength of 1559.25 nm and repetition frequency of 1 MHz.展开更多
The carboxyl-functionalized graphene oxide(GO-COOH)is a kind of unique two-dimensional(2 D)material and possesses excellent nonlinear saturable absorption property and high water-solubility.In this paper,we prepare sa...The carboxyl-functionalized graphene oxide(GO-COOH)is a kind of unique two-dimensional(2 D)material and possesses excellent nonlinear saturable absorption property and high water-solubility.In this paper,we prepare saturable absorber(SA)device by depositing GO-COOH nanosheets aqueous solution on a D-shaped fiber.The modulation depth(MD)and saturable intensity of the SA are measured to be 9.6%and 19 MW/cm^(2),respectively.By inserting the SA into the erbium-doped fiber(EDF)laser,a passively mode-locked EDF laser has been achieved with the spectrum center wavelength of 1562.76 nm.The pulse duration,repetition rate,and the signal-to-noise ratio(SNR)are 500 fs,14.79 MHz,and 80 dB,respectively.The maximum average output power is measured to be 3.85 mW.These results indicate that the GO-COOH nanosheets SA can be used as a promising mode locker for the generation of ultrashort pulses.展开更多
We prepared graphene oxide(GO) saturable absorber(SA) successfully through optical deposition method, which is a simple but effective approach to deposit various materials onto substrate under the effects of light...We prepared graphene oxide(GO) saturable absorber(SA) successfully through optical deposition method, which is a simple but effective approach to deposit various materials onto substrate under the effects of light, and investigated several factors that influence the optical deposition result of GO onto optical fiber end, including poly(methyl methacrylate)(PMMA) concentration, light intensity, light mode, and deposition time. The efficient optically deposited GO preserving its nonlinearity guaranteed by GO/PMMA composite formation was also demonstrated. The GO SA prepared by optical deposition shows superior saturable absorption property with modulation depth and nonsaturable loss of 6% and 40%, respectively.展开更多
A Q-switched erbium-doped fiber laser(EDFL)incorporating zinc-oxide(ZnO)nanoparticles-based saturable absorber(SA)is proposed and demonstrated.To form the SA,the ZnO nanoparticles,which are originally in the powder fo...A Q-switched erbium-doped fiber laser(EDFL)incorporating zinc-oxide(ZnO)nanoparticles-based saturable absorber(SA)is proposed and demonstrated.To form the SA,the ZnO nanoparticles,which are originally in the powder form,are first dissolved in ethanol and subsequently deposited onto the surface of fiber ferrule by using the adhesion effect with the evaporation technique.By integrating the ZnO nanoparticle-based SA into a laser cavity of an EDFL,a self-started and stable Q-switching is achieved at a low threshold power of 20.24 mW.As the pump power is increased,the pulse repetition rate is tunable from 10.34 kHz to 25.59 kHz while pulse duration decreases from 21.39μs to 3.65μs.Additionally,this Q-switched laser has a maximum energy per pulse of 19.34 nJ and an average output power of 0.46 mW.These results indicate the feasibility and functionality of the ZnO nanoparticles-based SA for Q-switched generation,which offers the flexibility and easy integration of the SA into a ring laser cavity.展开更多
Aim: To investigate the effect of cavernous nerve injury on the nNOS-containing nerve fibers in rat corpus cavernosum.Methods: Thirty-three male SD rats were randomized into 3 groups: 5 rats underwent pelvic explorati...Aim: To investigate the effect of cavernous nerve injury on the nNOS-containing nerve fibers in rat corpus cavernosum.Methods: Thirty-three male SD rats were randomized into 3 groups: 5 rats underwent pelvic exploration without tran-section of cavernous nerve as the sham-operated controls, the unilateral injury group (14 rats) had the cavernous nerve cuton one side, and the bilateral injury group (14 rats) had the nerves cut on both sides. Corpora cavernosa were harvestedat the 3rd week and 6th month after surgery, nNOS-positive nerve fibers were examined with strepavidin peroxidase im-munohistochemistry techniques (SP method). Results: After bilateral ablation, the nNOS-positive nerve fibers weresignificantly decreased at both the 3rd week ( 17 ± 4) and the 6th month (16 ± 4). For the unilateral injury group, thenNOS-positive nerve fibers were similarly decreased on the side of the neurotomy at the 3rd week (18 ± 6), but by the 6thmonth, the number increased significantly (61±9) and approximated the level on the contralateral side (81 ± 13). Con-clusion: In rats after unilateral cavernous nerve ablation, nNOS-containing nerve fibers might regenerate 6 months afteroperation, but regeneration did not occur in animals with bilateral cavernous nerve injury. Results suggest that duringpelvic radical surgery, the cavernous nerve should be preserved at least on one side in order to accomplish adequate regen-eration. (Asian J Androl 1999 Sep ; 1: 135 - 138)展开更多
Allene oxide cyclase (AOC) is one of the most important enzymes in the biosynthetic pathway of the plant hormone jasmonic acid (JA). AOC catalyzes the conversion ofallene oxide into 12-oxo-phytodienoic acid (OPDA...Allene oxide cyclase (AOC) is one of the most important enzymes in the biosynthetic pathway of the plant hormone jasmonic acid (JA). AOC catalyzes the conversion ofallene oxide into 12-oxo-phytodienoic acid (OPDA), a precursor of JA. Using 28K cotton genome array hybridization, an expressed sequence tag (EST; GenBank accession no. ES792958) was investigated that exhibited significant expression differences between lintless-fuzzless XinWX and linted-fuzzless XinFLM isogenic lines during fiber initiation stages. The EST was used to search the Gossypium EST database (http://www.ncbi.nlm.nih.gov/) for corresponding cDNA sequences encoding full-length open reading frames (ORFs). Identified ORFs were confirmed using transcriptional and genomic data. As a result, a novel gene encoding AOC in cotton (Gossypium hirsutum AOC; GenBank accession no. KF383427) was cloned and characterized. The 741-bp GhAOC gene comprises three exons and two introns and encodes a polypeptide of 246 amino acids. Two homologous copies were identified in the tetraploid cotton species G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124, and one copy in the diploid cotton species G. herbaceum and G. raimondii, qRT-PCR showed that the GhAOC transcript was abundant in cotton fiber tissues from 8 to 23 days post anthesis (DPA), and the expression profiles were similar in the two cultivated tetraploid cotton species G. hirsutum acc. TM- 1 and G. barbadense cv. Hai7124, with a higher level of transcription in the former. One copy of GhAOC in tetraploid cotton was localized to chromosome 24 (Chr. D8) using the subgenome-specific single nucleotide polymorphism (SNP) marker analysis, which co-localized GhAOC to within 10 cM of a fiber strength quantitative trait locus (QTL) reported previously. GhAOC was highly correlated with fiber quality and strength (P=0.014) in an association analysis, suggesting a possible role in cotton fiber development, especially in secondary cell wall thickening.展开更多
The oxidation resistance of isotropic pitch-based carbon fibers are sudied by thermogravimetric analysis,scanning electron microscope and mechanical propefties measure. The change of weight loss,microtextule and mecha...The oxidation resistance of isotropic pitch-based carbon fibers are sudied by thermogravimetric analysis,scanning electron microscope and mechanical propefties measure. The change of weight loss,microtextule and mechanical properties on condition of thermostatical oxidation and nonisothermal oxidation are separately mainly discussed.The results during isothermic oxidation at 316℃ showed that the weight loss of isotropic pitch-based carbon fiber increased and the strength, module rapidly decreased with prolongation of time, but the surface of carbon fiber is smoother and has not surface such as etching pits etc. The weight of isotropic pitch-based carbon fiber decreased more rapidly during the experiment of thermo-variable weight loss after 500℃ than before 500℃.展开更多
This article explores the drilling behavior of polymer nanocomposites reinforced by Graphene oxide/Carbon fiber using a hybrid method of Grey theory and Principal component analysis(GR-PCA).An online digital dynamomet...This article explores the drilling behavior of polymer nanocomposites reinforced by Graphene oxide/Carbon fiber using a hybrid method of Grey theory and Principal component analysis(GR-PCA).An online digital dynamometer was employed for the evaluation of Thrust Force and Torque.The image processing technique computes the delamination.Response surface methodology(RSM)considers the parameters,namely,drilling speed(S),feed rate(F),Graphene Oxide wt.%(G)in designing the experimentation array.Principal component analysis(PCA)was used to tackle the response priority weight during the combination of multiple functions.Analysis of variance(ANOVA)scrutinized the influence of parameters and intended the regression models to predict the response.GR-PCA evaluated the optimal parametric setting and remarked that feed rate acts as the most predominant factor.The higher feed rate and wt.%of G is responsible for surface damages like fiber pull-out,fiber fracture and cracks.A significant improvement in drilling responses has been obtained and also validates through confirmatory test and microstructure investigations.展开更多
In order to investigate the effects of pre-oxidation conditions on adsorption performance of activated carbon fibers ( ACFs ), electrospun polyacrylonitrile ( PAN ) fiber webs were adopted as precursors for prepar...In order to investigate the effects of pre-oxidation conditions on adsorption performance of activated carbon fibers ( ACFs ), electrospun polyacrylonitrile ( PAN ) fiber webs were adopted as precursors for preparing ACFs. Firstly, the webs were stabilized under different pre-oxidation conditions; secondly, the pre-oxidative fibers were chemically activated by high temperature treatment in nitrogen. Pre-oxidation temperature, heating rate, and treatment time are the main factors on affecting the adsorption performance of the ACFs. Scanning electron microscope ( SEM), differential scanning calorimeter (DSC), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the structure and property of the pre-oxldatlve fibers, and the dynamic benzene adsorption capacity of benzene of ACFs was measured. The results indicate that the moderate pre-oxidation condition is necessary to prepare the ACFs with better adsorption capacity, and the optimal oxidation conditions are to increase from room temperature to 230 ~C with a heating rate of 0.75 ~C ~ min -1 held at the peak temperature for 30min.展开更多
The catalytic oxidative cou pling of methane(OCM)to C_(2) hydrocarbons(C_(2)H_(6) and C_(2)H_(4))represents one of the most effective ways to convert natural gas to more useful products,which can be performed effectiv...The catalytic oxidative cou pling of methane(OCM)to C_(2) hydrocarbons(C_(2)H_(6) and C_(2)H_(4))represents one of the most effective ways to convert natural gas to more useful products,which can be performed effectively using La_(0.6)Sr0.4Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF)perovskite hollow fiber membrane microreactor.In this work,the effects of adding a thin BaCe_(0.8)Gd_(0.2)O_(3-δ)(BCG)catalyst film onto the inner LSCF fiber surface as the OCM catalyst and a porous Ba0.5Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)(BSCF)perovskite layer onto the outer LSCF surface to improve the oxygen permeation were evaluated.Between 700℃and 1000℃,methane conversion increased in the order of uncoated,BCG and BSCF-coated,and BCG-coated LSCF hollow fiber while Coselectivity and C_(2)-yield increased in the order of BCG and BSCF-coated,uncoated,and BCG-coated LSCF hollow fiber.Oxygen permeation flux at the same temperature range,on the other hand,was enhanced in the order of uncoated,BCG-coated,and BCG and BSCF-coated LSCF hollow fiber.This finding demonstrates the complex interplay between oxygen permeation and OCM performance.The BCG and BSCFcoated hollow fiber was also subjected to thermal cycles between 850℃and 900℃for up to 175 hours during which the fiber showed minor degradation in oxygen permeation fluxes and relatively stable OCM performance.展开更多
The surface of dry-jet wet spun carbon fibers(CFs)is relatively smooth compared with those of wet spun CFs,which results in weak interfacial interactions between the fiber and the polymer resin.A surface functionaliza...The surface of dry-jet wet spun carbon fibers(CFs)is relatively smooth compared with those of wet spun CFs,which results in weak interfacial interactions between the fiber and the polymer resin.A surface functionalization treatment is particularly important to unleash the full potential of the superior mechanical properties of dry-jet wet spun CFs.In this study,the effects of electrochemical oxidation treatment time and current density on the surface structures and the mechanical properties of dry-jet wet spun CFs were investigated.The interlaminar shear strength of the CFs improves significantly from 69 to 84 MPa after 120 s of treatment.Further structural analysis reveals that the improvements are due to the addition of oxygen-containing functional groups and the optimization of the morphology on the surface of the CFs.展开更多
基金Sponsored by the Scientific Research Foundation of Harbin Institute of Technology(Grant No. HIT. 2003.57)
文摘The surface properties of PAN-based carbon fibers electrochemically treated in aqueous ammonium bicarbonate before and after treatment were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Dynamic Contact Angle Analysis (DCAA). The results of characterization indicated that the oxygen and nitrogen contents in carbon fiber surface were significantly increased by electrochemical treatment, and amide groups was introduced onto it, which was related with the electrolyte. The AFM photographs illustrated that the roughness of the fiber surface was also increased. The wettibality of the fibers was improved after treatment because the surface energy especially the polar part of it was increased.
基金funded by the Natural Science Foundation of Jiangsu Province(BK20210252)。
文摘The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure,low engine efficiency,and high usage of precious metals.This study proposes a four-channel catalytic micro-reactor based on alumina hollow fiber membrane,which uses phase inversion method for structural molding and regulation.Due to the advantages of its carrier,it can achieve lower ignition temperature under low noble metal loading.With Pd/CeO_(2) at a loading rate of 2.3%(mass),the result showed that the reaction ignition temperature is even less than 160℃,which is more than 90℃ lower than the data of commercial ceramic substrates under similar catalyst loading and airspeed conditions.The technology in turn significantly reduces the energy consumption of the reaction.And stability tests were conducted under constant conditions for 1000 h,which proved that this catalytic converter has high catalytic efficiency and stability,providing prospects for the design of innovative catalytic converters in the future.
基金support of the Fundamental Research Funds for the Central Universities(No.2022CDJQY-004)the Fund for Innovative Research Groups of Natural Science Foundation of Hebei Province(No.A2020202002).
文摘Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.
文摘When the PAN-based stabilized fiber(PAN-SF) was converted to the carbon fiber, the effect of some of the carbonizing parameters on the structure and properties of the resulting carbon fibers, such as the molecular structure development, element contents, morphology and mechanical properties, was discussed. The results show that the carbonizing temperature, the purity of the inert gas and the de-oil pretreatment of the tiber have a great influence on them.
基金Funded by the National Natural Science Foundation of China (No.10672128 and 50878170)
文摘The deformation resistance effect of polyacrylonitrile (PAN)-based carbon fibers was investigated, and the variatipn law of electrical resistivity under tensile stress was analyzed. The results show that the gauge factor (fractional change in resistance per unit strain) of PAN-based carbon fibers is 1.38, which is lower than that of the commonly-used resistance strain gauge. These may due to that the electrical resistivity of carbon fibers decreases under tensile stress. In addition when the carbon fibers are stretched, the change of its resistance is caused by fiber physical dimension and the change of electric resistivity, and mainly caused by the change of physical dimension. The mechanical properties of carbon fiber monofilament were also measured.
基金Supported by Sichuan Provincial International S&T Cooperation Program(No.2008HH0012)Cooperation Research Program of Sichuan University and Hitachi Company(No.07H372)~~
文摘[Objective] The aim was to research the influences of different formulations on oxidation resistance of PVDF hollow fiber membrane.[Method]The immersion precipitation phase inversion method was employed to make casting solution with different formulations into hollow fiber membrane.The membrane was immersed in 1% NaClO solution for testing its performance changes.[Result]The membrane made by materials with bigger molecular weight had better oxidation resistance performance;the surfactant tween-80 could increase water flux,but lead to lower rupture intension;Pore-forming agent PEG400 do better than PVP in the oxidation resistance of membrane.[Conclusion]This study will provide a good idea for the development of the PVDF membrane with high oxidation resistance.
基金supported by the National Defense Science and Technology Innovation Zone Project(No.18-H863-05-ZT-001-018-09)
文摘A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characterized by scanning electron microscope,Fourier transform infrared spectra and contact angle.Cyclic voltammetry and Tafel curves have been used to study its electro-chemical performances.Two identical electrodes in sea water as the electric field sensor will swiftly respond to applied electric field which causes positive and negative ions to move in opposite direction,resulting in a electric potential difference(ΔE).Test result indicates that the offset potential is typically below 1 m V with a drift of 60-170μVd^-1.Typical self noise level is 1.07 nV√Hz^(1/2)@1 Hz.The electric field response indicates that the modified electrode pair shows better response to AC sine signal of amplitude and frequency(5 mV and 1 mHz)respectively than its blank.The electric field response model of the modified electrodes is creatively presented according to its electric double layer capacitance and Faraday pseudo-capacitance.Many advantages of the carbon fiber electric field electrode will make it have potential application prospect.
基金This work was financially supported by the National Nat-ural Science Foundation of China(Grant No.50172004 and 50333070).
文摘Surface of polyacrylonitrile (PAN)-based carbon fibers was modified by electrochemical oxidation. The modification effect on carbon fibers surface was explored using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Results showed that on the modified surface of carbon fibers, the carbon contents decreased by 9.7% and the oxygen and nitrogen contents increased by 53.8% and 7.5 times, respectively. The surface roughness and the hydroxyl and carbonyl contents also increased. The surface orientation index was reduced by 1.5% which decreased tensile strength of carbon fibers by 8.1%, and the microcrystalline dimension also decreased which increased the active sites of carbon fiber surface by 78%. The physical and chemical properties of carbon fibers surface were modified through the electrochemical oxidative method, which improved the cohesiveness between the fibers and resin matrix and increased the interlaminar shear strength (ILSS) of carbon fibers reinforced epoxy composite (CFRP) over 20%.
基金Project supported by the Central University Special Fund for Basic Research and Operating Expenses,China(Grant No.GK201702005)the Natural Science Foundation of Shaanxi Province,China(Grant No.2017JM6091)+1 种基金the National Natural Science Foundation of China(Grant No.61705183)the Fundamental Research Funds for the Central Universities(Grant No.2017TS011)
文摘We demonstrate a nanosecond mode-locked erbium-doped fiber laser (EDFL) based on a reduced graphene oxide (RGO) saturable absorber (SA). The RGO SA is prepared by depositing the graphene oxide (GO) on fluorine mica through thermal reduction of GO. A scanning electron microscope (SEM), Raman spectrometer, and x-ray photoelectron spec- troscopy (XPS) are adopted to analyze the RGO characteristics. The results show that the reduction degree of graphene oxide is very high. By embedding the RGO SA into the EDFL cavity, a stable mode-locked fiber laser is achieved with a central wavelength of 1567.29 nm and repetition rate of 12.66 MHz. The maximum output power and the minimum pulse duration are measured to be 18.22 mW and 1.38 ns respectively. As far as we know, the maximum output power of 18.22 mW is higher than those of other nanosecond mode-locked oscillators reported. Such a nanosecond pulse duration and megahertz repetition rate make this mode-locked erbium-doped fiber laser a suitable seed oscillator for high-power applications and chirped pulse amplifications.
文摘A mode-locked erbium doped fiber laser(EDFL) is demonstrated using the vanadium oxide(V2O5) material as a saturable absorber(SA). The V2O5 based SA is hosted into poly ethylene oxide film and attached on fiber ferule in the laser cavity. It shows 7% modulation depth with 71 MW/cm2 saturation intensity. By incorporating the SA inside the EDFL cavity with managed intra-cavity dispersion, ultrashort soliton pulses are successfully generated with a full width at half maximum of 3.14 ps. The laser operated at central wavelength of 1559.25 nm and repetition frequency of 1 MHz.
基金Project supported by the Central University Special Fund Basic Research and Operating Expenses,China(Grant No.GK201702005)the Natural Science Foundation of Shaanxi Province,China(Grant No.2017JM6091)+1 种基金the National Natural Science Foundation of China(Grant No.61705183)the Fundamental Research Funds for the Central Universities,China(Grant No.2017TS011)
文摘The carboxyl-functionalized graphene oxide(GO-COOH)is a kind of unique two-dimensional(2 D)material and possesses excellent nonlinear saturable absorption property and high water-solubility.In this paper,we prepare saturable absorber(SA)device by depositing GO-COOH nanosheets aqueous solution on a D-shaped fiber.The modulation depth(MD)and saturable intensity of the SA are measured to be 9.6%and 19 MW/cm^(2),respectively.By inserting the SA into the erbium-doped fiber(EDF)laser,a passively mode-locked EDF laser has been achieved with the spectrum center wavelength of 1562.76 nm.The pulse duration,repetition rate,and the signal-to-noise ratio(SNR)are 500 fs,14.79 MHz,and 80 dB,respectively.The maximum average output power is measured to be 3.85 mW.These results indicate that the GO-COOH nanosheets SA can be used as a promising mode locker for the generation of ultrashort pulses.
基金Funded by the National Natural Science Foundation of China(Nos.61575150 and 61377092)the Fundamental Research Funds for the Central Universities(WUT:2017II46GX)
文摘We prepared graphene oxide(GO) saturable absorber(SA) successfully through optical deposition method, which is a simple but effective approach to deposit various materials onto substrate under the effects of light, and investigated several factors that influence the optical deposition result of GO onto optical fiber end, including poly(methyl methacrylate)(PMMA) concentration, light intensity, light mode, and deposition time. The efficient optically deposited GO preserving its nonlinearity guaranteed by GO/PMMA composite formation was also demonstrated. The GO SA prepared by optical deposition shows superior saturable absorption property with modulation depth and nonsaturable loss of 6% and 40%, respectively.
基金Project supported by the Science Fund from the Ministry of Higher Education of Malaysia(MOHE)(Grant No.FRGS/1/2016/STG02/UPM/02/5)
文摘A Q-switched erbium-doped fiber laser(EDFL)incorporating zinc-oxide(ZnO)nanoparticles-based saturable absorber(SA)is proposed and demonstrated.To form the SA,the ZnO nanoparticles,which are originally in the powder form,are first dissolved in ethanol and subsequently deposited onto the surface of fiber ferrule by using the adhesion effect with the evaporation technique.By integrating the ZnO nanoparticle-based SA into a laser cavity of an EDFL,a self-started and stable Q-switching is achieved at a low threshold power of 20.24 mW.As the pump power is increased,the pulse repetition rate is tunable from 10.34 kHz to 25.59 kHz while pulse duration decreases from 21.39μs to 3.65μs.Additionally,this Q-switched laser has a maximum energy per pulse of 19.34 nJ and an average output power of 0.46 mW.These results indicate the feasibility and functionality of the ZnO nanoparticles-based SA for Q-switched generation,which offers the flexibility and easy integration of the SA into a ring laser cavity.
文摘Aim: To investigate the effect of cavernous nerve injury on the nNOS-containing nerve fibers in rat corpus cavernosum.Methods: Thirty-three male SD rats were randomized into 3 groups: 5 rats underwent pelvic exploration without tran-section of cavernous nerve as the sham-operated controls, the unilateral injury group (14 rats) had the cavernous nerve cuton one side, and the bilateral injury group (14 rats) had the nerves cut on both sides. Corpora cavernosa were harvestedat the 3rd week and 6th month after surgery, nNOS-positive nerve fibers were examined with strepavidin peroxidase im-munohistochemistry techniques (SP method). Results: After bilateral ablation, the nNOS-positive nerve fibers weresignificantly decreased at both the 3rd week ( 17 ± 4) and the 6th month (16 ± 4). For the unilateral injury group, thenNOS-positive nerve fibers were similarly decreased on the side of the neurotomy at the 3rd week (18 ± 6), but by the 6thmonth, the number increased significantly (61±9) and approximated the level on the contralateral side (81 ± 13). Con-clusion: In rats after unilateral cavernous nerve ablation, nNOS-containing nerve fibers might regenerate 6 months afteroperation, but regeneration did not occur in animals with bilateral cavernous nerve injury. Results suggest that duringpelvic radical surgery, the cavernous nerve should be preserved at least on one side in order to accomplish adequate regen-eration. (Asian J Androl 1999 Sep ; 1: 135 - 138)
基金financially supported in part by the National High-Tech R&D Program of China(2012AA101108-04-04)the Jiangsu Agriculture Science and Technology Innovation Fund,China(cx(13)3059)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Allene oxide cyclase (AOC) is one of the most important enzymes in the biosynthetic pathway of the plant hormone jasmonic acid (JA). AOC catalyzes the conversion ofallene oxide into 12-oxo-phytodienoic acid (OPDA), a precursor of JA. Using 28K cotton genome array hybridization, an expressed sequence tag (EST; GenBank accession no. ES792958) was investigated that exhibited significant expression differences between lintless-fuzzless XinWX and linted-fuzzless XinFLM isogenic lines during fiber initiation stages. The EST was used to search the Gossypium EST database (http://www.ncbi.nlm.nih.gov/) for corresponding cDNA sequences encoding full-length open reading frames (ORFs). Identified ORFs were confirmed using transcriptional and genomic data. As a result, a novel gene encoding AOC in cotton (Gossypium hirsutum AOC; GenBank accession no. KF383427) was cloned and characterized. The 741-bp GhAOC gene comprises three exons and two introns and encodes a polypeptide of 246 amino acids. Two homologous copies were identified in the tetraploid cotton species G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124, and one copy in the diploid cotton species G. herbaceum and G. raimondii, qRT-PCR showed that the GhAOC transcript was abundant in cotton fiber tissues from 8 to 23 days post anthesis (DPA), and the expression profiles were similar in the two cultivated tetraploid cotton species G. hirsutum acc. TM- 1 and G. barbadense cv. Hai7124, with a higher level of transcription in the former. One copy of GhAOC in tetraploid cotton was localized to chromosome 24 (Chr. D8) using the subgenome-specific single nucleotide polymorphism (SNP) marker analysis, which co-localized GhAOC to within 10 cM of a fiber strength quantitative trait locus (QTL) reported previously. GhAOC was highly correlated with fiber quality and strength (P=0.014) in an association analysis, suggesting a possible role in cotton fiber development, especially in secondary cell wall thickening.
文摘The oxidation resistance of isotropic pitch-based carbon fibers are sudied by thermogravimetric analysis,scanning electron microscope and mechanical propefties measure. The change of weight loss,microtextule and mechanical properties on condition of thermostatical oxidation and nonisothermal oxidation are separately mainly discussed.The results during isothermic oxidation at 316℃ showed that the weight loss of isotropic pitch-based carbon fiber increased and the strength, module rapidly decreased with prolongation of time, but the surface of carbon fiber is smoother and has not surface such as etching pits etc. The weight of isotropic pitch-based carbon fiber decreased more rapidly during the experiment of thermo-variable weight loss after 500℃ than before 500℃.
文摘This article explores the drilling behavior of polymer nanocomposites reinforced by Graphene oxide/Carbon fiber using a hybrid method of Grey theory and Principal component analysis(GR-PCA).An online digital dynamometer was employed for the evaluation of Thrust Force and Torque.The image processing technique computes the delamination.Response surface methodology(RSM)considers the parameters,namely,drilling speed(S),feed rate(F),Graphene Oxide wt.%(G)in designing the experimentation array.Principal component analysis(PCA)was used to tackle the response priority weight during the combination of multiple functions.Analysis of variance(ANOVA)scrutinized the influence of parameters and intended the regression models to predict the response.GR-PCA evaluated the optimal parametric setting and remarked that feed rate acts as the most predominant factor.The higher feed rate and wt.%of G is responsible for surface damages like fiber pull-out,fiber fracture and cracks.A significant improvement in drilling responses has been obtained and also validates through confirmatory test and microstructure investigations.
文摘In order to investigate the effects of pre-oxidation conditions on adsorption performance of activated carbon fibers ( ACFs ), electrospun polyacrylonitrile ( PAN ) fiber webs were adopted as precursors for preparing ACFs. Firstly, the webs were stabilized under different pre-oxidation conditions; secondly, the pre-oxidative fibers were chemically activated by high temperature treatment in nitrogen. Pre-oxidation temperature, heating rate, and treatment time are the main factors on affecting the adsorption performance of the ACFs. Scanning electron microscope ( SEM), differential scanning calorimeter (DSC), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the structure and property of the pre-oxldatlve fibers, and the dynamic benzene adsorption capacity of benzene of ACFs was measured. The results indicate that the moderate pre-oxidation condition is necessary to prepare the ACFs with better adsorption capacity, and the optimal oxidation conditions are to increase from room temperature to 230 ~C with a heating rate of 0.75 ~C ~ min -1 held at the peak temperature for 30min.
基金the research funding provided by the National Natural Science Foundation of China(21805206,22179073).
文摘The catalytic oxidative cou pling of methane(OCM)to C_(2) hydrocarbons(C_(2)H_(6) and C_(2)H_(4))represents one of the most effective ways to convert natural gas to more useful products,which can be performed effectively using La_(0.6)Sr0.4Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF)perovskite hollow fiber membrane microreactor.In this work,the effects of adding a thin BaCe_(0.8)Gd_(0.2)O_(3-δ)(BCG)catalyst film onto the inner LSCF fiber surface as the OCM catalyst and a porous Ba0.5Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)(BSCF)perovskite layer onto the outer LSCF surface to improve the oxygen permeation were evaluated.Between 700℃and 1000℃,methane conversion increased in the order of uncoated,BCG and BSCF-coated,and BCG-coated LSCF hollow fiber while Coselectivity and C_(2)-yield increased in the order of BCG and BSCF-coated,uncoated,and BCG-coated LSCF hollow fiber.Oxygen permeation flux at the same temperature range,on the other hand,was enhanced in the order of uncoated,BCG-coated,and BCG and BSCF-coated LSCF hollow fiber.This finding demonstrates the complex interplay between oxygen permeation and OCM performance.The BCG and BSCFcoated hollow fiber was also subjected to thermal cycles between 850℃and 900℃for up to 175 hours during which the fiber showed minor degradation in oxygen permeation fluxes and relatively stable OCM performance.
基金Jiangsu Province for the Transformation of Scientific and Technological Achievements(BA2019043)Jiangsu Provincial Key Research and Development Program(BE2021014-2)。
文摘The surface of dry-jet wet spun carbon fibers(CFs)is relatively smooth compared with those of wet spun CFs,which results in weak interfacial interactions between the fiber and the polymer resin.A surface functionalization treatment is particularly important to unleash the full potential of the superior mechanical properties of dry-jet wet spun CFs.In this study,the effects of electrochemical oxidation treatment time and current density on the surface structures and the mechanical properties of dry-jet wet spun CFs were investigated.The interlaminar shear strength of the CFs improves significantly from 69 to 84 MPa after 120 s of treatment.Further structural analysis reveals that the improvements are due to the addition of oxygen-containing functional groups and the optimization of the morphology on the surface of the CFs.