Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-mi...Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-milling method for highly active and selective hydrogenation of CO_(2) to value-added hydrocarbons.When reacted at 320℃,1.0 MPa and 9600 mL h^(-1) g_(cat)^(-1),the selectivity to light olefin(C_(2)^(=)-C_(4)^(=)) and C_(5)+ species achieves 57.3% and 22.3%,respectively,at a CO_(2) co nversion of 31.4%,which is superior to previous Fe-based catalysts.The CO_(2) activation can be promoted by the CoFe phase formed by reactive ball milling of the Fe-Co_(3)O_(4) mixture,and the in-situ Co_(2)C and Fe_(5)C_(2) formed during hydrogenation are beneficial for the C-C coupling reaction.The initial C-C coupling is related to the combination of CO species with the surface carbon of Fe/Co carbides,and the sustained C-C coupling is maintained by self-recovery of defective carbides.This new strategy contributes to the development of efficient catalysts for the hydrogenation of CO_(2) to value-added hydrocarbons.展开更多
This study evaluates the impact of the Pani Panchayat initiative, a community-based water management program, in the Angul and Dhenkanal districts of Odisha. Utilizing a mixed-methods approach, we gathered qualitative...This study evaluates the impact of the Pani Panchayat initiative, a community-based water management program, in the Angul and Dhenkanal districts of Odisha. Utilizing a mixed-methods approach, we gathered qualitative and quantitative data through structured interviews with diverse stakeholders, focus group discussions, and surveys. The findings indicate that the Angul district exhibited higher levels of fair elections and improved water access due to better canal maintenance, while the Dhenkanal district faced challenges from industrial water usage. The study also examines the potential of technological advancements, such as real-time water monitoring, to enhance governance. By identifying synergies and gaps with existing water policies, the research provides policy recommendations to promote sustainable water management in alignment with the Sustainable Development Goals 2030.展开更多
基金supported by the National Natural Science Foundation of China (22008098, 21978156, 42002040)the Program for Innovative Research Team (in Science and Technology) in University of Henan Province (21IRTSTHN004)+1 种基金the Program for Science & Technology Innovation Talents in Universities of Henan Province (22HASTIT008)the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2022-K34)。
文摘Catalytic hydrogenation of CO_(2) using renewable hydrogen not only reduces greenhouse gas emissions,but also provides industrial chemicals.Herein,a Co-Fe bimetallic catalyst was developed by a facile reactive ball-milling method for highly active and selective hydrogenation of CO_(2) to value-added hydrocarbons.When reacted at 320℃,1.0 MPa and 9600 mL h^(-1) g_(cat)^(-1),the selectivity to light olefin(C_(2)^(=)-C_(4)^(=)) and C_(5)+ species achieves 57.3% and 22.3%,respectively,at a CO_(2) co nversion of 31.4%,which is superior to previous Fe-based catalysts.The CO_(2) activation can be promoted by the CoFe phase formed by reactive ball milling of the Fe-Co_(3)O_(4) mixture,and the in-situ Co_(2)C and Fe_(5)C_(2) formed during hydrogenation are beneficial for the C-C coupling reaction.The initial C-C coupling is related to the combination of CO species with the surface carbon of Fe/Co carbides,and the sustained C-C coupling is maintained by self-recovery of defective carbides.This new strategy contributes to the development of efficient catalysts for the hydrogenation of CO_(2) to value-added hydrocarbons.
文摘This study evaluates the impact of the Pani Panchayat initiative, a community-based water management program, in the Angul and Dhenkanal districts of Odisha. Utilizing a mixed-methods approach, we gathered qualitative and quantitative data through structured interviews with diverse stakeholders, focus group discussions, and surveys. The findings indicate that the Angul district exhibited higher levels of fair elections and improved water access due to better canal maintenance, while the Dhenkanal district faced challenges from industrial water usage. The study also examines the potential of technological advancements, such as real-time water monitoring, to enhance governance. By identifying synergies and gaps with existing water policies, the research provides policy recommendations to promote sustainable water management in alignment with the Sustainable Development Goals 2030.