A PANI/WO3@cotton thread-based flexible sensor that is capable of detecting NH3 at room temperature is developed here.A layer of WO3 with PANI nanoparticles can be deposited by in-situ polymerization.The morphology an...A PANI/WO3@cotton thread-based flexible sensor that is capable of detecting NH3 at room temperature is developed here.A layer of WO3 with PANI nanoparticles can be deposited by in-situ polymerization.The morphology and structure of the specimens were investigated by utilizing TEM,SEM,XRD and FTIR.The sensing performance of the PANI/WO3@cotton sensors with different WO3 molar ratios to NH3 at room temperature was examined.The results show that the optimal sensor(10 mol%WO3)has a response of 6.0 to 100 ppm NH3,which is significantly higher than that of the sensors based on pristine PANI and other composites.The PANI/WO3@cotton sensor also displays excellent selectivity,gas response,and flexibility even at room temperature.The unique fiber structure,p-n heterojunction,and the increased protonation of PANI in the composites contribute to the enhanced sensing property.展开更多
基金This work was supported by the National Natural Science Foundation of China(61471233).
文摘A PANI/WO3@cotton thread-based flexible sensor that is capable of detecting NH3 at room temperature is developed here.A layer of WO3 with PANI nanoparticles can be deposited by in-situ polymerization.The morphology and structure of the specimens were investigated by utilizing TEM,SEM,XRD and FTIR.The sensing performance of the PANI/WO3@cotton sensors with different WO3 molar ratios to NH3 at room temperature was examined.The results show that the optimal sensor(10 mol%WO3)has a response of 6.0 to 100 ppm NH3,which is significantly higher than that of the sensors based on pristine PANI and other composites.The PANI/WO3@cotton sensor also displays excellent selectivity,gas response,and flexibility even at room temperature.The unique fiber structure,p-n heterojunction,and the increased protonation of PANI in the composites contribute to the enhanced sensing property.