期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
Faster Than Sound, Daredevil Parachute Jumps from the Edge of the Space
1
作者 Seppo Mäkinen 《Advances in Aerospace Science and Technology》 2023年第4期55-67,共13页
This article discusses the kinematics of a parachutist making a very-high-altitude jump. The effect of altitude on the density of air, on the gravitational field strength of the Earth, and on the atmosphere’s tempera... This article discusses the kinematics of a parachutist making a very-high-altitude jump. The effect of altitude on the density of air, on the gravitational field strength of the Earth, and on the atmosphere’s temperature has been taken into account in our analysis. The well-known equations of classical mechanics governing the selected topic have been solved numerically by using the mathematical software Mathcad. Especially, the possibility of a person exceeding the speed of sound during their fall has been considered in our analysis. The effect of the sound barrier is taken into account so that the shape factor of the falling body is given as a speed-dependent function, which reaches its maximum value at Mach 1.0. The obtained results have been found to be highly consistent with the available experimental data on some high-altitude jumps. The data published on the famous jump of Captain Joseph Kittinger has been analyzed very carefully, and although our calculations reproduced the reported values for most parts, some interesting inconsistencies were also discovered. Kittinger jumped from a gondola attached to a helium-filled balloon from a record-high altitude of 102,800 ft, or 31,330 m, in August 1960. We also made numerical analysis on the high-altitude jump of Felix Baumgartner. He bailed out from his gondola at the record-high altitude of 39.0 km in October 2012. 展开更多
关键词 parachute Jumps ATMOSPHERE Numerical Modelling Transonic Speeds
下载PDF
改善缺血性心力衰竭的新选择——Parachute左心室重建术 被引量:2
2
作者 魏毅东 刘宝鑫 《中国循证心血管医学杂志》 2015年第2期148-150,共3页
近年来,心力衰竭(心衰)的患病率逐年增高,日渐成为严重的公共卫生问题,有临床症状患者的5年存活率与恶性肿瘤相仿。其病因众多,最常见的病因之一为急性心肌梗死[1]。临床上,尤其是前壁心肌梗死合并室壁瘤的患者更易发生缺血性心衰,左... 近年来,心力衰竭(心衰)的患病率逐年增高,日渐成为严重的公共卫生问题,有临床症状患者的5年存活率与恶性肿瘤相仿。其病因众多,最常见的病因之一为急性心肌梗死[1]。临床上,尤其是前壁心肌梗死合并室壁瘤的患者更易发生缺血性心衰,左心室壁瘤可改变左室壁曲度和厚度,导致整个心脏的扩张和变形。 展开更多
关键词 parachute 心室壁瘤 前壁心肌梗死 室壁瘤形成 急性心肌梗死 临床症状 左心室结构 左室壁 心功能 左心室造影
下载PDF
经皮左心室室壁瘤PARACHUTE封堵术治疗的护理 被引量:3
3
作者 李程 李长岭 +1 位作者 鲁闻燕 林剑靖 《护理与康复》 2016年第1期36-38,共3页
总结3例经皮左心室室壁瘤PARACHUTE封堵术治疗的护理体会。护理重点为术前规范化治疗基础疾病,改善心肾功能;术后严密监测生命体征,预防和积极处理异常情况,做好抗血小板抗凝治疗的护理,做好水化治疗护理,预防急性肾功能衰竭;治疗康复... 总结3例经皮左心室室壁瘤PARACHUTE封堵术治疗的护理体会。护理重点为术前规范化治疗基础疾病,改善心肾功能;术后严密监测生命体征,预防和积极处理异常情况,做好抗血小板抗凝治疗的护理,做好水化治疗护理,预防急性肾功能衰竭;治疗康复过程中重视患者主诉和心理护理,持续强化健康宣教。3例患者经治疗和护理,均治愈出院。 展开更多
关键词 左心室室壁瘤 parachute封堵术 护理
下载PDF
Study on transient aerodynamic characteristics of parachute opening process 被引量:20
4
作者 Li Yu Xiao Ming 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第6期627-633,共7页
In the research of parachute, canopy inflation process modeling is one of the most complicated tasks. As canopy often experiences the largest deformations and loa-dings during a very short time, it is of great difficu... In the research of parachute, canopy inflation process modeling is one of the most complicated tasks. As canopy often experiences the largest deformations and loa-dings during a very short time, it is of great difficulty for theoretical analysis and experimental measurements. In this paper, aerodynamic equations and structural dynamics equations were developed for describing parachute opening process, and an iterative coupling solving strategy incorpo- rating the above equations was proposed for a small-scale, flexible and flat-circular parachute. Then, analyses were carried out for canopy geometry, time-dependent pressure difference between the inside and outside of the canopy, transient vortex around the canopy and the flow field in the radial plane as a sequence in opening process. The mechanism of the canopy shape development was explained from perspective of transient flow fields during the inflation process. Experiments of the parachute opening process were conducted in a wind tunnel, in which instantaneous shape of the canopy was measured by high velocity camera and the opening loading was measured by dynamometer balance. The theoretical predictions were found in good agreement with the experimental results, validating the proposed approach. This numerical method can improve the situation of strong dependence of parachute research on wind tunnel tests, and is of significance to the understanding of the mechanics of parachute inflation process. 展开更多
关键词 parachute Opening process Numerical simulation Flow field characteristics AERODYNAMICS Structural dynamics
下载PDF
Incidence and risk factors associated with injuries during static line parachute training in Royal Thai Army 被引量:6
5
作者 Watcharaphat Maneechaeye Kathawoot Deepreecha Wiroj Jiamjarasrangsi 《Military Medical Research》 SCIE CAS CSCD 2020年第4期401-408,共8页
Background:Incidence and risk factors of parachute injuries has been studied in developed countries,but not in trainees of the airborne forces in the Royal Thailand Army.Methods:A prospective cohort study was conducte... Background:Incidence and risk factors of parachute injuries has been studied in developed countries,but not in trainees of the airborne forces in the Royal Thailand Army.Methods:A prospective cohort study was conducted among 992 military personnel who attended the basic airborne training program from February to July 2018.Information sheets were used to collect data about(a)personal demographics;(b)environmental conditions surrounding the parachute practice;and(c)parachute-related injuries.The incidence rate of injury was then calculated.Risk factors were examined using multilevel Poisson regression analysis and presented as incidence rate ratio(IRR)and 95%confidence interval(95%CI).Results:A total of 166 parachute-related injuries occurred in 4677 jumps.The incidence rate of injury was 35.50 per 1000 jumps(95%CI 30.04–41.21).Factors significantly related to parachute injury included:jumping with equipment versus without equipment[adjusted IRR(95%CI):1.28(0.88–1.87)],higher wind speed[1.54(1.27–1.87)per knot],airplane versus helicopter exit[1.75(0.68–4.55)],side versus rear exit[2.13(1.43–3.23)],night versus day jumping[2.19(0.81–5.90)],and presence of motion sickness[3.43(1.93–6.92)].Conclusions:To prevent military static line parachute injuries,the following factors should be taken into consideration:type of aircraft,aircraft exit,time of the day,equipment,motion sickness and wind speed.Trial registration:The project was certified by the Research Ethics Committee,Faculty of Medicine,Chulalongkorn University(IRB No.697/60). 展开更多
关键词 INJURIES parachute Paratroopers
下载PDF
Flow Characteristics of Double-Cruciform Parachute at Inflating and Inflated Conditions 被引量:3
6
作者 Fang Ming Sun Jianhong +2 位作者 Zhang Tong Hou Bin Zhang Yantai 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第6期992-999,共8页
The fluid-structure interaction (FSI) between the canopy and flow field on the inflating and inflated conditions is investigated based on the arbitrary Lagrange-Euler (ALE) method,in both a single-and double-cruciform... The fluid-structure interaction (FSI) between the canopy and flow field on the inflating and inflated conditions is investigated based on the arbitrary Lagrange-Euler (ALE) method,in both a single-and double-cruciform parachute systems.The projection area of canopy is calculated in the inflation process.The flow field characteristics and the interaction between canopies are analyzed.Results showed that,with free stream velocity of 50m/s,overinflation phenomenon would not occur during the inflation process of the double-cruciform-parachute system,because the collision and extrusion of the two canopies during inflation obstructed the oscillation of the inner gores.Concurrently,compared with the single-cruciform parachute,the vortex motion in the wake of double-cruciform-parachute is more intense.Thus the double-cruciform parachute system oscillated at a velocity of 50 m/s with an angle of less than 6.8°.By comparison,the oscillation angle of the single-cruciform parachute was within 3.5° at the velocity of 50m/s.The results are consistent with those of the wind tunnel test. 展开更多
关键词 process of INFLATION arbitrary Lagrange-Euler(ALE) LAMB vector divergence CRUCIFORM parachute
下载PDF
Experimental investigation of the effect of Reynolds number on flow structures in the wake of a circular parachute canopy 被引量:3
7
作者 Zhe-Yan Jin Sylvio Pasqualini Bo Qin 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第3期361-369,共9页
In the present study, an experimental study was conducted to characterize the effect of Reynolds number on flow structures in the turbulent wake of a circular parachute canopy by utilizing stereoscopic particle image ... In the present study, an experimental study was conducted to characterize the effect of Reynolds number on flow structures in the turbulent wake of a circular parachute canopy by utilizing stereoscopic particle image velocime- try (Stereo-PIV) technique. The parachute model tested in the present study was attached by 28 nylon suspension lines and placed horizontally at the test section center of the wind tunnel. The obtained results showed that with the in- crease of Reynolds number, the intensities of the vortices near the downstream region of the canopy skirt were found to increase accordingly. However, the increase of Reynolds number did not result in a significant change in ensemble- averaged normalized x-component of the velocity, ensembleaveraged normalized vorticity, normalized Reynolds stress, and normalized turbulent kinetic energy distributions in the turbulent wake of the circular parachute canopy. The obtained results are very useful to further our understanding about the unsteady aerodynamics in the wake of flexible circular parachute canopies and to constitute a reference for CFD computation. 展开更多
关键词 Stereo-PIV Circular parachute - Canopy Flexible Turbulent wake
下载PDF
Numerical Study of Parachute-Payload Land Site Distribution with Randomize Wind Gust Model 被引量:1
8
作者 Tang Jianhua Qian Linfang +1 位作者 Yin Qiang Jiang Li 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第2期383-394,共12页
A parachute-payload model with randomize wind gust is developed to study the landing accuracy of the parachute decelerator system,which can be exactly described by the landing site distribution.The research focuses on... A parachute-payload model with randomize wind gust is developed to study the landing accuracy of the parachute decelerator system,which can be exactly described by the landing site distribution.The research focuses on the steady descent phase of the parachute descent process,so the parachute and the payload suspension formulation during the phase are mainly discussed.In addition,since the wind effects have a significant impact on the land site distribution of the passive decelerator system and it is difficult to obtain the exact wind profile in practice,major features of parachute-payload system are studied via the randomized wind gust formulation.As the randomized wind gust formulation is adopted,the wind effect can be considered without the exact wind gust profile and the parachute aerodynamic simulation can be fulfilled with uncertainties.Finally,the model is validated and discussed,and the parachute land site distributions with different wind randomize profiles are presented for comparison.The results show that when parachute is less stable,the land site tends to have a larger variance. 展开更多
关键词 parachute decelerator system wind profile Monte Carlo LAND SITE DISTRIBUTION
下载PDF
Flow Field Characteristics for Parachute-projectile System 被引量:6
9
作者 ZHU Yong LIU Li WANG Zhengping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期813-819,共7页
In the current research for parachute flow field nowadays,the size of parachutes in previous research are so large compared with their carriers that the effects of the carriers wake flow to parachute are always neglec... In the current research for parachute flow field nowadays,the size of parachutes in previous research are so large compared with their carriers that the effects of the carriers wake flow to parachute are always neglected.Different from such large parachutes,the parachute size in this paper is on the same magnitude with the carrier,thus,the carrier can obviously affect the parachute flow field.In this paper,flow field characteristics of small parachute for projectile decelerating are researched through two approaches,namely,computational fluid dynamics(CFD) simulation and wind tunnel tests.Three parachutes with various sizes are chosen for study.Firstly,the CFD simulation of flow field around these parachutes is carried out,and then the CFD simulation of parachute-projectile systems is executed.According to the simulation results,the phenomenon is observed that in the simulations of parachutes there are two vortex-rings at the wind shadow of parachutes,however,in the second simulations of parachute-projectile systems,two additional vortex-rings emerge inside the parachutes.Due to these two inner vortex-rings,the pressure inside parachutes decreases.As a result,the drag of parachute in simulation of parachute-projectile systems is about 20% smaller compared with the prior one.In order to verify the numerical results of CFD simulations,wind tunnel tests are employed.In terms of the data of the wind tunnel tests,the CFD simulation for flow field characteristics is reasonable and feasible.The results of both CFD simulation and wind tunnel tests demonstrated the influence of projectile wake flow to parachute drag can not be neglected if the parachute size is on the same magnitude with projectile.The influence to parachute drag from the ratio of projectile diameter to parachute diameter is also analyzed both in CFD simulations and wind tunnel tests.The approach combined CFD simulation and wind tunnel tests proposed can be used to guide the design of such parachute whose size is on the same magnitude with carrier. 展开更多
关键词 parachute projectile flow field computational fluid dynamics(CFD) wind tunnel test
下载PDF
Study of velocity effects on parachute inflation performance based on fluid-structure interaction method 被引量:1
10
作者 程涵 张鑫华 +1 位作者 余莉 陈猛 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第9期1177-1188,共12页
The inflation of a five-ring cone parachute with the airflow velocity of 18 m/s is studied based on the simplified arbitrary Lagrange Euler (SALE)/fluid-structure interaction (FSI) method. The numerical results of... The inflation of a five-ring cone parachute with the airflow velocity of 18 m/s is studied based on the simplified arbitrary Lagrange Euler (SALE)/fluid-structure interaction (FSI) method. The numerical results of the canopy shape, stability, opening load, and drag area are obtained, and they are well consistent with the experimental data gained from wind tunnel tests. The method is then used to simulate the opening process under different velocities. It is found that the first load shock affected by the velocity often occurs at the end of the initial inflation stage. For the first time, the phenomena that the inflation distance proportion coefficient increases and the dynamic load coefficient decreases, respectively, with the increase in the velocity are revealed. The above proposed method is competent to solve the large deformation problem without empirial coefficients, and can collect more space-time details of fluid-structure-motion information when it is compared with the traditional method. 展开更多
关键词 fluid-structure interaction (FSI) parachute inflation performance velocity empirical coefficient opening shock load
下载PDF
A study of a supersonic capsule/rigid disk-gap-band parachute system using large-eddy simulation 被引量:1
11
作者 Sheng GONG Chuijie WU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第4期485-500,共16页
The aerodynamic performances and flow features of the capsule/rigid disk-gap-band(DGB)parachute system from the Mach number 1.8 to 2.2 are studied.We use the adaptive mesh refinement(AMR),the hybrid tuned center-diffe... The aerodynamic performances and flow features of the capsule/rigid disk-gap-band(DGB)parachute system from the Mach number 1.8 to 2.2 are studied.We use the adaptive mesh refinement(AMR),the hybrid tuned center-difference and weighted essentially non-oscillatory(TCD-WENO)scheme,and the large-eddy simulation(LES)with the stretched-vortex subgrid model.The simulations reproduce complex interaction of the flow structures,including turbulent wakes and bow shocks,as well as bow shocks and expansion waves.The results show that the calculated aerodynamic drag coefficient agrees well with the previou simulation.Both the aerodynamic drag coefficient and the aerodynamic drag oscillation of the parachute system decrease with the increase of the initial Mach number of the fluid.It is found that the position and angle of the bow shock ahead of the canopy change as the Mach number increases,which makes the flow inside the canopy and the turbulent wake behind the canopy more complex and unstable. 展开更多
关键词 compressible flow adaptive mesh refinement(AMR) large-eddy simulation(LES) supersonic flow rigid disk-gap-band(DGB)parachute
下载PDF
Measurement of the flow structures in the wakes of different types of parachute canopies 被引量:1
12
作者 Sylvio Pasqualini Zheyan Jin Zhigang Yang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期225-237,共13页
We measured flow structures with stereoscopic particle image velocimetry(stereo-PIV) in the turbulent wakes of three parachute canopies, which had the same surface area, but different geometries. The tested parachute ... We measured flow structures with stereoscopic particle image velocimetry(stereo-PIV) in the turbulent wakes of three parachute canopies, which had the same surface area, but different geometries. The tested parachute canopies included ribbon canopy, 8-branches canopy, and cross canopy. The obtained results showed that the geometry of the parachute canopies had significant influences on the flow structures in the wakes of these three canopies. In addition, the variation of Reynolds number did not lead to a dramatic change in the distributions of velocity, vorticity,Reynolds stress, and turbulent kinetic energy. 展开更多
关键词 parachute canopies Wake structures Particle image velocimetry
下载PDF
Numerical Simulation of ATPS Parachute Transient Dynamics Using Fluid-Structure Interaction Method
13
作者 Fan Yuxin Xia Jian 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第5期535-542,共8页
In order to simulate and analyze the dynamic characteristics of the parachute from advanced tactical parachute system(ATPS),a nonlinear finite element algorithm and a preconditioning finite volume method are employed ... In order to simulate and analyze the dynamic characteristics of the parachute from advanced tactical parachute system(ATPS),a nonlinear finite element algorithm and a preconditioning finite volume method are employed and developed to construct three dimensional parachute fluid-structure interaction(FSI)model.Parachute fabric material is represented by membrane-cable elements,and geometrical nonlinear algorithm is employed with wrinkling technique embedded to simulate the large deformations of parachute structure by applying the NewtonRaphson iteration method.On the other hand,the time-dependent flow surrounding parachute canopy is simulated using preconditioned lower-upper symmetric Gauss-Seidel(LU-SGS)method.The pseudo solid dynamic mesh algorithm is employed to update the flow-field mesh based on the complex and arbitrary motion of parachute canopy.Due to the large amount of computation during the FSI simulation,massage passing interface(MPI)parallel computation technique is used for all those three modules to improve the performance of the FSI code.The FSI method is tested to simulate one kind of ATPS parachutes to predict the parachute configuration and anticipate the parachute descent speeds.The comparison of results between the proposed method and those in literatures demonstrates the method to be a useful tool for parachute designers. 展开更多
关键词 parachute dynamics fluid-structure interaction nonlinear structure dynamics time dependent flow parallel computation technique
下载PDF
Transcatheter Decompression of the Left Atrium in an Adolescent with a Double Inlet Left Ventricle, Severe Parachute Mitral Valve Stenosis and Pulmonary Hypertension
14
作者 Y. H. Cai Q. Li +2 位作者 Z. Li G. Yang D. Schranz 《World Journal of Cardiovascular Diseases》 2017年第12期451-457,共7页
A 17-year-old adolescent with non-operated double inlet left-ventricle and severe stenosed parachute mitral valve is reported. He was admitted with repetitive syncope related to intermittent atrial fibrillation. Life-... A 17-year-old adolescent with non-operated double inlet left-ventricle and severe stenosed parachute mitral valve is reported. He was admitted with repetitive syncope related to intermittent atrial fibrillation. Life-threatening syncope combined with pre- and post-capillary pulmonary hypertension together with his single ventricle pathophysiology led to the decision for left atrial decompression by percutaneous static atrial septum ballooning after transseptal needle perforation. Aiming to create a restrictive atrial septum defect, unloading of the left atrium without disturbing the balanced hemodynamics was directed for a long-term palliation or as a basis for a further surgical follow-up approach. 展开更多
关键词 DOUBLE INLET LEFT VENTRICLE parachute Mitral Valve Pulmonary Hypertension LEFT Atrial DECOMPRESSION
下载PDF
Fluid structure interaction of supersonic parachute with material failure
15
作者 Shunchen NIE Li YU +2 位作者 Yanjun LI Zhihong SUN Bowen QIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第10期90-100,共11页
The material damage of parachute may occur in parachutes at high speeds,and the growth of tearing may finally lead to failure of aerospace mission.In order to study the damage mechanism of parachute,a material failure... The material damage of parachute may occur in parachutes at high speeds,and the growth of tearing may finally lead to failure of aerospace mission.In order to study the damage mechanism of parachute,a material failure model is proposed to simulate the failure of canopy fabric.The inflation process of supersonic parachute is studied numerically based on Arbitrary Lagrange Euler(ALE)method.The ALE method with material failure can predict the transient parachute shape with damage propagation as well as the flow characteristics in the parachute inflation process,and the simulated dynamic opening load is consistent with the flight test.The damage propagation mechanism of parachute is then investigated,and the effect of parachute velocity on the damage process is discussed.The results show that the canopy tears apart by the fast flow from the initial damaged area and the damaged canopy shape leads to the asymmetric change of the flow structure.With the increase of Mach number,the canopy tearing speed increases,and the tearing directions become uncertain at high Mach numbers.The dynamic load when damage occurs increases with the Mach number,and is proportional to the dynamic pressure above the critical Mach number. 展开更多
关键词 Arbitrary Lagrange Euler method Dynamic loads Fluid structure interaction Material failure model parachute damage
原文传递
Parachute dynamics and perturbation analysis of precision airdrop system 被引量:7
16
作者 Gao Xinglong Zhang Qingbin Tang Qiangang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第3期596-607,共12页
To analyze the parachute dynamics and stability characteristics of precision airdrop system, the fluid-structure interaction (FSI) dynamics coupling with the flight trajectory of a para- chute payload system is comp... To analyze the parachute dynamics and stability characteristics of precision airdrop system, the fluid-structure interaction (FSI) dynamics coupling with the flight trajectory of a para- chute payload system is comprehensively predicted by numerical methods. The inflation behavior of a disk-gap-band parachute is specifically investigated using the arbitrary Lagrangian Euler (ALE) penalty coupling method. With the available aerodynamic data obtained from the FSI sim- ulation, a nine-degree-of-freedom (9DOF) dynamic model of a parachute-payload system is built and solved to simulate the descent trajectory of the multi-body dynamic system. Finally, a linear five-degree-of-freedom (5DOF) dynamic model is developed, the perturbation characteristics and the motion laws of the parachute and payload under a wind gust are analyzed by the linearization method and verified by a comparison with flight test data. The results of airdrop test demonstrate that our method can be further applied to the guidance and control of precision airdrop systems. 展开更多
关键词 Airdrop system Flight dynamics Fluid structure interaction parachute Perturbation analysis
原文传递
Effect of Martian atmosphere on aerodynamic performance of supersonic parachute two-body systems 被引量:2
17
作者 Xiaopeng XUE He JIA +2 位作者 Wei RONG Qi WANG Chih-yung WEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第4期45-54,共10页
Supersonic flows around parachute two-body systems are numerically investigated by solving the compressible Navier-Stokes equations. In the present study, both rigid and flexible parachute models are considered, which... Supersonic flows around parachute two-body systems are numerically investigated by solving the compressible Navier-Stokes equations. In the present study, both rigid and flexible parachute models are considered, which comprise a capsule and a canopy. The objective of the present study is to investigate the effects of the Martian atmosphere on the unsteady flows produced by these parachute two-body models and the structural behavior of the flexible canopy. It was found that in the Martian atmosphere, the supersonic rigid parachutes with shorter trailing distances exhibited weaker aerodynamic interactions between the capsule wake and canopy shock, resulting in a smaller pressure distribution on the typical surfaces of the canopy. By contrast, because the flow modes around the flexible parachute in the Martian atmosphere were similar to those of the rigid parachute under the air conditions of the wind tunnel tests, the canopy shape was almost unchanged. When a new canopy material was designed by decreasing the Young’s modulus and damping coefficient, an area oscillation phenomenon was observed in the flexible parachute with a trailing distance of 10 in the Martian atmosphere. Consequently, the Martian atmosphere(low density and pressure) has a significant effect on the aerodynamic performance of the flexible parachute system. 展开更多
关键词 Canopy flexibility Fluid structure interaction Martian atmosphere Supersonic parachute Unsteady flow
原文传递
Simulation of 3D parachute fluid–structure interaction based on nonlinear finite element method and preconditioning finite volume method 被引量:2
18
作者 Fan Yuxin Xia Jian 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1373-1383,共11页
A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a t... A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a three-dimensional membrane–cable fabric model to represent a parachute system at a highly folded configuration. The large shape change during parachute inflation is computed by the nonlinear Newton–Raphson iteration and the linear system equation is solved by the generalized minimal residual(GMRES) method. A membrane wrinkling algorithm is also utilized to evaluate the special uniaxial tension state of membrane elements on the parachute canopy. In order to avoid large time expenses during structural nonlinear iteration, the implicit Hilber–Hughes–Taylor(HHT) time integration method is employed. For the fluid dynamic simulations, the Roe and HLLC(Harten–Lax–van Leer contact) scheme has been modified and extended to compute flow problems at all speeds. The lower–upper symmetric Gauss–Seidel(LUSGS) approximate factorization is applied to accelerate the numerical convergence speed. Finally,the test model of a highly folded C-9 parachute is simulated at a prescribed speed and the results show similar characteristics compared with experimental results and previous literature. 展开更多
关键词 Flow fields analysis Fluid–structure interaction Nonlinear structural dynam-ics Numerical analysis parachute inflation
原文传递
Parachute by Sean Lennon
19
《英语角》 2009年第10期18-18,共1页
关键词 英语学习 学习方法 阅读 parachute by Sean Lennon》
原文传递
Firm Marketing Parachute for Office Workers
20
作者 黄景 《当代外语研究》 2001年第12期18-18,共1页
美国911事件的影响将是持久广泛的。以色列的一家公司视911为一商机,设计并制造了可从摩天大厦逃生的降落伞。文称911事件为thesuicide-hijacking attacks,这是目前的一个广为使用的新词。英语构词之便捷由此可见一斑。此外,Executivech... 美国911事件的影响将是持久广泛的。以色列的一家公司视911为一商机,设计并制造了可从摩天大厦逃生的降落伞。文称911事件为thesuicide-hijacking attacks,这是目前的一个广为使用的新词。英语构词之便捷由此可见一斑。此外,Executivechute也令人称奇,它由chute演变而来,chute就是“降落伞”的意思,Executive一词有“经理主管人员”的意思。那么,Executivechute一词便不难理解。能否汉译成“白领降落伞”?】 展开更多
关键词 降落伞 OFFICE Firm Marketing parachute for Office Workers
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部