期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The Existence of BIB Designs 被引量:1
1
作者 Yanxun Chang Institute of Mathematics,Northern Jiaotong University,Beijing 100044,P.R.China 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2000年第1期103-112,共10页
Given any positive integers k3 and λ,let c(k,λ)denote the smallest integer such that u ∈ B(k,λ)for every integer uc(k,λ)that satisfies the congruences λv(v-1)≡0(mod k(k-1))and λ(u-1)≡0(mod k-1... Given any positive integers k3 and λ,let c(k,λ)denote the smallest integer such that u ∈ B(k,λ)for every integer uc(k,λ)that satisfies the congruences λv(v-1)≡0(mod k(k-1))and λ(u-1)≡0(mod k-1).In this article we make an improvement on the bound of c(k,λ)provided by Chang in[4]and prove that c(k,λ)exp{k<sup>3k<sup>6</sup></sup>}.In particular,c(k,1)exp{k<sup>k<sup>2</sup></sup>}. 展开更多
关键词 Wilson’s theorem Balanced incomplete block design pbd-closed
原文传递
A bound for Wilson' s general theorem
2
作者 常彦勋 《Science China Mathematics》 SCIE 2000年第2期128-140,共13页
Given any setK of positive integers and positive integer λ, letc(K,λ) denote the smallest integer such that v ∈B(K, λ) for every integerv≥c(K, λ) that satisfies the congruencesλv(v-1) ≡ 0 (modβ(K)) and λ (v-... Given any setK of positive integers and positive integer λ, letc(K,λ) denote the smallest integer such that v ∈B(K, λ) for every integerv≥c(K, λ) that satisfies the congruencesλv(v-1) ≡ 0 (modβ(K)) and λ (v-1)=≡ (modα(K)). LetK 0 be an equivalent set ofK, k andk* be the smallest and the largest integers inK 0. We prove that c(K, λ) ≤exp expQ 0 where $$Q_0 = \max \left\{ {2^{(2p(K_0 )^2 - k + k^2 \log _4 k)p(K_0 )^4 } ,(k^{k^2 } 4^{2y - k - 2} )^{(\begin{array}{*{20}c} y \\ 2 \\ \end{array} )} } \right\},$$ $p(K_0 ) = \prod\nolimits_{l \in K_0 } l $ andy=k*+k(k?1)+1. 展开更多
关键词 Wilson’ general theorem pairwise balanced design pbd-closed
原文传递
THE EXISTENCE OF RESOLVABLE BIBD WITH λ = 1
3
作者 常彦勋 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2000年第4期373-385,共13页
Let k be any integer and k≥3. In this article it is proved that the necessary condition υ=k (mod k(k-1)) for the existence of an RB(v,k,1) is sufficient whenever u>exp{exp{k12k2}}.
关键词 Pairwise balanced design pbd-closed resolvable BIBD
全文增补中
上一页 1 下一页 到第
使用帮助 返回顶部