通过基于生理学的药动学(physiologically based pharmacokinetic,PBPK)建模策略预测晶型Ⅰ与晶型Ⅱ利福平在人体内的药动学行为,判断两者是否生物等效。对两种晶型利福平进行体外研究后,以大鼠静脉给药的药动学数据为基础,构建大鼠PBP...通过基于生理学的药动学(physiologically based pharmacokinetic,PBPK)建模策略预测晶型Ⅰ与晶型Ⅱ利福平在人体内的药动学行为,判断两者是否生物等效。对两种晶型利福平进行体外研究后,以大鼠静脉给药的药动学数据为基础,构建大鼠PBPK模型,再通过大鼠口服给药的药动学数据进行模型优化,种属外推至健康人体,利用外推模型预测两种晶型的利福平在健康人体内的血药浓度-时间曲线、吸收部位及吸收量等药动学行为。健康人体模型预测结果显示,晶型Ⅰ与晶型Ⅱ利福平的c_(max)分别为8.42和10.35μg/mL,t_(max)分别为0.40和0.32 h,AUC_(0-t)均为62.90μg·h/mL。根据吸收情况预测结果,晶型Ⅰ与晶型Ⅱ利福平在胃部均不被吸收,但在肠道被完全吸收,两者吸收部位及吸收量基本一致。晶型Ⅰ与晶型Ⅱ利福平的药动学参数十分接近,预测两者具有生物等效性。展开更多
目的通过建立阿奇霉素的成人-儿童转化模型,为儿科临床用药提供指导性的建议,降低儿童用药风险,实现儿童临床个性化用药。方法查阅相关文献,利用成人的临床阿奇霉素口服给药试验的受试者生理参数结合阿奇霉素的药物特异参数,通过建立异...目的通过建立阿奇霉素的成人-儿童转化模型,为儿科临床用药提供指导性的建议,降低儿童用药风险,实现儿童临床个性化用药。方法查阅相关文献,利用成人的临床阿奇霉素口服给药试验的受试者生理参数结合阿奇霉素的药物特异参数,通过建立异速生长模型,生理药动学(physiologically based pharmacokinetic,PBPK)模型,根据文献提取的儿童个体口服阿奇霉素临床数据验证这2个模型的参数缩放公式的正确性。进一步利用这2种模型模拟出儿童相关药动学参数并计算出这些参数的相对偏差和相对标准误差。结果通过模拟发现2个模型得到的药动学参数cmax、tmax、AUC0-∞实测值接近,都在文献范围内,可认为2模型的参数转化公式正确。进一步计算参数的相对偏差和相对标准误差,成人-儿童PBPK预测模型的cmax、tmax、AUC0-∞的相对偏差和相对标准误差都比异速生长模型的小。结论阿奇霉素PBPK模型预测儿童药动学参数较异速生长模型要好。本研究所应用的口服用药成人-儿童模型特异性参数的缩放公式,经阿奇霉素验证成功,可以外推至其他药物,为其他口服给药的成人-儿童模型转化提供便利。展开更多
Physiologically based pharmacokinetic(PBPK) modeling and simulation can be used to predict the pharmacokinetic behavior of drugs in humans using preclinical data.It can also explore the effects of various physiologic ...Physiologically based pharmacokinetic(PBPK) modeling and simulation can be used to predict the pharmacokinetic behavior of drugs in humans using preclinical data.It can also explore the effects of various physiologic parameters such as age,ethnicity,or disease status on human pharmacokinetics,as well as guide dose and dose regiment selection and aid drug–drug interaction risk assessment.PBPK modeling has developed rapidly in the last decade within both the field of academia and the pharmaceutical industry,and has become an integral tool in drug discovery and development.In this mini-review,the concept and methodology of PBPK modeling are briefly introduced.Several case studies were discussed on how PBPK modeling and simulation can be utilized through various stages of drug discovery and development.These case studies are from our own work and the literature for better understanding of the absorption,distribution,metabolism and excretion(ADME) of a drug candidate,and the applications to increase efficiency,reduce the need for animal studies,and perhaps to replace clinical trials.The regulatory acceptance and industrial practices around PBPK modeling and simulation is also discussed.展开更多
Respiratory antibiotics have been proven clinically beneficial for the treatment of severe lung infections such as Pseudomonas aeruginosa.Maintaining a high local concentration of inhaled antibiotics for an extended t...Respiratory antibiotics have been proven clinically beneficial for the treatment of severe lung infections such as Pseudomonas aeruginosa.Maintaining a high local concentration of inhaled antibiotics for an extended time in the lung is crucial to ensure an adequate antimicrobial efficiency.In this study,we aim to investigate whether an extended exposure of ciprofloxacin(CIP),a model fluoroquinolone drug,in the lung epithelial lining fluid(ELF)could be achieved via a controlled-release formulation strategy.CIP solutions were intratracheally instilled to the rat lungs at 3 different rates,i.e.,T0h(fast),T2h(medium),and T4h(slow),to mimic different release profiles of inhaled CIP formulations in the lung.Subsequently,the concentration-time profiles of CIP in the plasma and the lung ELF were obtained,respectively,to determine topical exposure index(ELF-Plasma AUC Ratio,EPR).The in silico PBPK model,validated based on the in vivo data,was used to identify the key factors that influence the disposition of CIP in the plasma and lungs.The medium and slow rates groups exhibited much higher EPR than that fast instillation group.The ELF AUC of the medium and slow instillation groups were about 200 times higher than their plasma AUC.In contrast,the ELF AUC of the fast instillation group was only about 20 times higher than the plasma AUC.The generated whole-body PBPK rat model,validated by comparison with the in vivo data,revealed that drug pulmonary absorption rate was the key factor that determined pulmonary absorption of CIP.This study suggests that controlled CIP release from inhaled formulations may extend the exposure of CIP in the ELF post pulmonary administration.It also demonstrates that combining the proposed intratracheal installation model and in silico PBPK model is a useful approach to identify the key factors that influence the absorption and disposition of inhaled medicine.展开更多
多柔比星(doxorubicin,DOX)在临床广泛应用于实体肿瘤、淋巴瘤和白血病等的治疗。DOX的细胞毒性作用和心脏毒性作用,使得其在发挥抗肿瘤作用的同时也产生严重毒副作用,限制了临床应用。这促使研究者不断深入了解其体内药动学、作用机制...多柔比星(doxorubicin,DOX)在临床广泛应用于实体肿瘤、淋巴瘤和白血病等的治疗。DOX的细胞毒性作用和心脏毒性作用,使得其在发挥抗肿瘤作用的同时也产生严重毒副作用,限制了临床应用。这促使研究者不断深入了解其体内药动学、作用机制,找到适宜的临床治疗方案,以及开发出新的制剂或给药系统。在DOX的研究过程中,基于生理的药物动力学模型(physiologically based pharmacokinetic model,PBPK)发挥了非常重要的作用。本文从DOX的PBPK模型发展到应用于DOX给药方案设计、药动学影响因素分析、细胞毒性和心脏毒性作用机制以及指导DOX前药及新制剂开发研究等方面进行介绍,对DOX的PBPK模型发展及其应用进展进行了概述。展开更多
文摘通过基于生理学的药动学(physiologically based pharmacokinetic,PBPK)建模策略预测晶型Ⅰ与晶型Ⅱ利福平在人体内的药动学行为,判断两者是否生物等效。对两种晶型利福平进行体外研究后,以大鼠静脉给药的药动学数据为基础,构建大鼠PBPK模型,再通过大鼠口服给药的药动学数据进行模型优化,种属外推至健康人体,利用外推模型预测两种晶型的利福平在健康人体内的血药浓度-时间曲线、吸收部位及吸收量等药动学行为。健康人体模型预测结果显示,晶型Ⅰ与晶型Ⅱ利福平的c_(max)分别为8.42和10.35μg/mL,t_(max)分别为0.40和0.32 h,AUC_(0-t)均为62.90μg·h/mL。根据吸收情况预测结果,晶型Ⅰ与晶型Ⅱ利福平在胃部均不被吸收,但在肠道被完全吸收,两者吸收部位及吸收量基本一致。晶型Ⅰ与晶型Ⅱ利福平的药动学参数十分接近,预测两者具有生物等效性。
文摘目的通过建立阿奇霉素的成人-儿童转化模型,为儿科临床用药提供指导性的建议,降低儿童用药风险,实现儿童临床个性化用药。方法查阅相关文献,利用成人的临床阿奇霉素口服给药试验的受试者生理参数结合阿奇霉素的药物特异参数,通过建立异速生长模型,生理药动学(physiologically based pharmacokinetic,PBPK)模型,根据文献提取的儿童个体口服阿奇霉素临床数据验证这2个模型的参数缩放公式的正确性。进一步利用这2种模型模拟出儿童相关药动学参数并计算出这些参数的相对偏差和相对标准误差。结果通过模拟发现2个模型得到的药动学参数cmax、tmax、AUC0-∞实测值接近,都在文献范围内,可认为2模型的参数转化公式正确。进一步计算参数的相对偏差和相对标准误差,成人-儿童PBPK预测模型的cmax、tmax、AUC0-∞的相对偏差和相对标准误差都比异速生长模型的小。结论阿奇霉素PBPK模型预测儿童药动学参数较异速生长模型要好。本研究所应用的口服用药成人-儿童模型特异性参数的缩放公式,经阿奇霉素验证成功,可以外推至其他药物,为其他口服给药的成人-儿童模型转化提供便利。
文摘Physiologically based pharmacokinetic(PBPK) modeling and simulation can be used to predict the pharmacokinetic behavior of drugs in humans using preclinical data.It can also explore the effects of various physiologic parameters such as age,ethnicity,or disease status on human pharmacokinetics,as well as guide dose and dose regiment selection and aid drug–drug interaction risk assessment.PBPK modeling has developed rapidly in the last decade within both the field of academia and the pharmaceutical industry,and has become an integral tool in drug discovery and development.In this mini-review,the concept and methodology of PBPK modeling are briefly introduced.Several case studies were discussed on how PBPK modeling and simulation can be utilized through various stages of drug discovery and development.These case studies are from our own work and the literature for better understanding of the absorption,distribution,metabolism and excretion(ADME) of a drug candidate,and the applications to increase efficiency,reduce the need for animal studies,and perhaps to replace clinical trials.The regulatory acceptance and industrial practices around PBPK modeling and simulation is also discussed.
基金financially supported by the Liaoning Pan Deng Xue Zhe Scholar(No.XLYC2002061)the National Natural Science Foundation of China(No.81573380)+3 种基金the Overseas Expertise Introduction Project for Discipline Innovation(“111 Project”)(No.D20029)financial support from the Guiding Project for Science and Technology of Liaoning Province(No.2019-ZD-0448)Ministry of Education Chunhui Program(2020)support from Ministry of Education Science and Technological Development,Republic of Serbia(No.451-03-9/2021-14/200161)。
文摘Respiratory antibiotics have been proven clinically beneficial for the treatment of severe lung infections such as Pseudomonas aeruginosa.Maintaining a high local concentration of inhaled antibiotics for an extended time in the lung is crucial to ensure an adequate antimicrobial efficiency.In this study,we aim to investigate whether an extended exposure of ciprofloxacin(CIP),a model fluoroquinolone drug,in the lung epithelial lining fluid(ELF)could be achieved via a controlled-release formulation strategy.CIP solutions were intratracheally instilled to the rat lungs at 3 different rates,i.e.,T0h(fast),T2h(medium),and T4h(slow),to mimic different release profiles of inhaled CIP formulations in the lung.Subsequently,the concentration-time profiles of CIP in the plasma and the lung ELF were obtained,respectively,to determine topical exposure index(ELF-Plasma AUC Ratio,EPR).The in silico PBPK model,validated based on the in vivo data,was used to identify the key factors that influence the disposition of CIP in the plasma and lungs.The medium and slow rates groups exhibited much higher EPR than that fast instillation group.The ELF AUC of the medium and slow instillation groups were about 200 times higher than their plasma AUC.In contrast,the ELF AUC of the fast instillation group was only about 20 times higher than the plasma AUC.The generated whole-body PBPK rat model,validated by comparison with the in vivo data,revealed that drug pulmonary absorption rate was the key factor that determined pulmonary absorption of CIP.This study suggests that controlled CIP release from inhaled formulations may extend the exposure of CIP in the ELF post pulmonary administration.It also demonstrates that combining the proposed intratracheal installation model and in silico PBPK model is a useful approach to identify the key factors that influence the absorption and disposition of inhaled medicine.
文摘多柔比星(doxorubicin,DOX)在临床广泛应用于实体肿瘤、淋巴瘤和白血病等的治疗。DOX的细胞毒性作用和心脏毒性作用,使得其在发挥抗肿瘤作用的同时也产生严重毒副作用,限制了临床应用。这促使研究者不断深入了解其体内药动学、作用机制,找到适宜的临床治疗方案,以及开发出新的制剂或给药系统。在DOX的研究过程中,基于生理的药物动力学模型(physiologically based pharmacokinetic model,PBPK)发挥了非常重要的作用。本文从DOX的PBPK模型发展到应用于DOX给药方案设计、药动学影响因素分析、细胞毒性和心脏毒性作用机制以及指导DOX前药及新制剂开发研究等方面进行介绍,对DOX的PBPK模型发展及其应用进展进行了概述。