利用中国160站逐月降水资料,运用一种基于前馈型人工神经网络的非线性主成分分析方法(nonlinear principal component analysis,NLPCA)研究了中国近50 a四季降水异常分布的非线性特征。结果表明,NLPCA有能力表示出更一般的低维结构特征...利用中国160站逐月降水资料,运用一种基于前馈型人工神经网络的非线性主成分分析方法(nonlinear principal component analysis,NLPCA)研究了中国近50 a四季降水异常分布的非线性特征。结果表明,NLPCA有能力表示出更一般的低维结构特征。四季降水的异常分布都具有一定的非线性相关空间结构,其中春夏季节非线性较强,秋冬季节稍弱;四季降水距平的一维NLPCA近似在非线性主成分取极端相反位相时,对应的空间分布型表现出明显的不对称性。四季降水异常的一维NLPCA近似都比传统一维PCA的近似逼真,且存在季节变化。展开更多
文摘利用中国160站逐月降水资料,运用一种基于前馈型人工神经网络的非线性主成分分析方法(nonlinear principal component analysis,NLPCA)研究了中国近50 a四季降水异常分布的非线性特征。结果表明,NLPCA有能力表示出更一般的低维结构特征。四季降水的异常分布都具有一定的非线性相关空间结构,其中春夏季节非线性较强,秋冬季节稍弱;四季降水距平的一维NLPCA近似在非线性主成分取极端相反位相时,对应的空间分布型表现出明显的不对称性。四季降水异常的一维NLPCA近似都比传统一维PCA的近似逼真,且存在季节变化。