期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
L_1-L_2范数联合约束的鲁棒目标跟踪 被引量:11
1
作者 孔繁锵 王丹丹 沈秋 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第3期690-697,共8页
针对稀疏原型跟踪方法中未考虑正交模板系数的密集性的问题,本文提出一种L1-L2范数联合约束的鲁棒目标跟踪。首先,该方法建立基于L1-L2范数联合约束的目标表示模型,对PCA基模板系数和琐碎模板系数分别进行L2范数和L1范数正则化约束,不... 针对稀疏原型跟踪方法中未考虑正交模板系数的密集性的问题,本文提出一种L1-L2范数联合约束的鲁棒目标跟踪。首先,该方法建立基于L1-L2范数联合约束的目标表示模型,对PCA基模板系数和琐碎模板系数分别进行L2范数和L1范数正则化约束,不仅提高了跟踪的准确性,而且保证了对目标遮挡的鲁棒性;其次,针对目标表示模型的优化问题,运用岭回归和软阈值收缩方法快速迭代求解PCA基模板系数和琐碎模板系数;最后以粒子滤波为框架,利用目标未被遮挡部分的重构误差和稀疏噪声项建立观测模型,并结合提出的L1-L2范数联合约束的算法实现目标跟踪。实验结果表明,与5个现有的跟踪算法相比,本文的跟踪算法具有更好的准确性和鲁棒性。 展开更多
关键词 pca基向量 目标跟踪 L2范数 L1范数
下载PDF
在线低秩稀疏表示的鲁棒视觉跟踪 被引量:2
2
作者 孔繁锵 王丹丹 +2 位作者 沈秋 卞陈鼎 严小乐 《工程科学与技术》 EI CAS CSCD 北大核心 2017年第4期151-157,共7页
基于L_1最小化的鲁棒视觉跟踪算法(L_1跟踪算法)使用图像灰度值特征描述目标,忽略了模板间的结构信息,对目标外观变化的建模不够准确,导致跟踪准确度较低。而且L1跟踪算法为了平衡跟踪速度和跟踪效果而采用分辨率较低的12×15图像块... 基于L_1最小化的鲁棒视觉跟踪算法(L_1跟踪算法)使用图像灰度值特征描述目标,忽略了模板间的结构信息,对目标外观变化的建模不够准确,导致跟踪准确度较低。而且L1跟踪算法为了平衡跟踪速度和跟踪效果而采用分辨率较低的12×15图像块,难以获取足够的信息来表征目标。针对L_1跟踪算法的不足,该文提出一种在线低秩稀疏表示的视觉跟踪算法。首先,该算法充分利用主成分分析(PCA)基向量对目标外观变化的表示能力并考虑目标遮挡现象,以PCA基向量模板描述目标外观变化,以琐碎模板处理遮挡等异常噪声,从而将候选目标表示为PCA基模板和琐碎模板的线性组合。其次在目标表示模型的优化问题中,对PCA基模板系数进行低秩约束和L_(1,1)范数正则化约束,对琐碎模板系数实施L_(1,1)范数约束,并采用非精确增广拉格朗日乘子(IALM)方法求解表示系数。然后在粒子滤波框架下,用目标未被遮挡部分的重建误差和稀疏误差项建立观测模型跟踪目标。最后为了克服模型漂移问题,采用遮挡检测更新机制进行模板更新。在对8组视频图像序列进行测试的实验中,图像块分辨率设定为32×32,与4个现有的跟踪算法相比,该算法取得了最高的平均重叠率0.78和最低的平均中心误差4.05。实验结果表明,该文提出的跟踪算法具有较好的跟踪准确性和鲁棒性。 展开更多
关键词 视觉跟踪 低秩表示 稀疏表示 pca基向量
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部