期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于稀疏表示和粒子滤波的在线目标跟踪算法
被引量:
5
1
作者
王海罗
汪渤
+2 位作者
高志峰
周志强
李笋
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2016年第6期635-640,共6页
针对目标跟踪过程中由于外形变化或者遮挡所造成的跟踪效果下降或导致漂移的问题,提出一种粒子滤波框架下基于稀疏表示的在线目标跟踪算法.采用分层梯度方向直方图(PHOG)特征对目标模板进行描述,并且每一个候选模板都可以通过PHOG基向...
针对目标跟踪过程中由于外形变化或者遮挡所造成的跟踪效果下降或导致漂移的问题,提出一种粒子滤波框架下基于稀疏表示的在线目标跟踪算法.采用分层梯度方向直方图(PHOG)特征对目标模板进行描述,并且每一个候选模板都可以通过PHOG基向量和琐碎模板进行稀疏表示,进而利用L1范数最小化方法进行最优求解.为保证在遮挡的情况下目标跟踪的精度,对目标遮挡部分和非遮挡部分进行拆分建模,并利用PCA子空间增量学习的方式不断更新目标跟踪模型.通过对具有挑战性的跟踪视频进行定性和定量分析,实验证明该方法在跟踪精度上要优于传统的跟踪方法.
展开更多
关键词
稀疏表示
pca增量学习
PHOG特征
在线目标跟踪
下载PDF
职称材料
题名
基于稀疏表示和粒子滤波的在线目标跟踪算法
被引量:
5
1
作者
王海罗
汪渤
高志峰
周志强
李笋
机构
北京理工大学自动化学院
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2016年第6期635-640,共6页
文摘
针对目标跟踪过程中由于外形变化或者遮挡所造成的跟踪效果下降或导致漂移的问题,提出一种粒子滤波框架下基于稀疏表示的在线目标跟踪算法.采用分层梯度方向直方图(PHOG)特征对目标模板进行描述,并且每一个候选模板都可以通过PHOG基向量和琐碎模板进行稀疏表示,进而利用L1范数最小化方法进行最优求解.为保证在遮挡的情况下目标跟踪的精度,对目标遮挡部分和非遮挡部分进行拆分建模,并利用PCA子空间增量学习的方式不断更新目标跟踪模型.通过对具有挑战性的跟踪视频进行定性和定量分析,实验证明该方法在跟踪精度上要优于传统的跟踪方法.
关键词
稀疏表示
pca增量学习
PHOG特征
在线目标跟踪
Keywords
sparse representation
pca
incremental learning
PHOG feature
on-line object tracking
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于稀疏表示和粒子滤波的在线目标跟踪算法
王海罗
汪渤
高志峰
周志强
李笋
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2016
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部