为了更准确地对高分辨率可见光农田路标导航图像进行目标识别,将基于主成分分析(PCA 2 Principal Component Analysis)和模板匹配的方法引入到了联合收割机控制系统中,提升了收割机自主图像识别水平和路径规划能力。在识别过程中,采用PC...为了更准确地对高分辨率可见光农田路标导航图像进行目标识别,将基于主成分分析(PCA 2 Principal Component Analysis)和模板匹配的方法引入到了联合收割机控制系统中,提升了收割机自主图像识别水平和路径规划能力。在识别过程中,采用PCA算法对分割图像进行特征提取和主成分分析,并将图像主轴旋转成水平方向和训练样本库进行匹配,最后识别出导航路标,并自动生成预设的路径。为了验证方案的可行性,将PCA模式识别算法嵌入到了收割机的控制系统中,在开阔平坦的农田里进行了实验测试,结果表明:采用PCA模式识别算法可以成功地识别农田里的导航路标,其识别准确率和效率都较高,且可以自动生成规划路径,对于现代收割机自动化作业能力的提升具有重要的意义。展开更多
Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of sampl...Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces.展开更多
文摘为了更准确地对高分辨率可见光农田路标导航图像进行目标识别,将基于主成分分析(PCA 2 Principal Component Analysis)和模板匹配的方法引入到了联合收割机控制系统中,提升了收割机自主图像识别水平和路径规划能力。在识别过程中,采用PCA算法对分割图像进行特征提取和主成分分析,并将图像主轴旋转成水平方向和训练样本库进行匹配,最后识别出导航路标,并自动生成预设的路径。为了验证方案的可行性,将PCA模式识别算法嵌入到了收割机的控制系统中,在开阔平坦的农田里进行了实验测试,结果表明:采用PCA模式识别算法可以成功地识别农田里的导航路标,其识别准确率和效率都较高,且可以自动生成规划路径,对于现代收割机自动化作业能力的提升具有重要的意义。
文摘Matrix principal component analysis (MatPCA), as an effective feature extraction method, can deal with the matrix pattern and the vector pattern. However, like PCA, MatPCA does not use the class information of samples. As a result, the extracted features cannot provide enough useful information for distinguishing pat- tern from one another, and further resulting in degradation of classification performance. To fullly use class in- formation of samples, a novel method, called the fuzzy within-class MatPCA (F-WMatPCA)is proposed. F-WMatPCA utilizes the fuzzy K-nearest neighbor method(FKNN) to fuzzify the class membership degrees of a training sample and then performs fuzzy MatPCA within these patterns having the same class label. Due to more class information is used in feature extraction, F-WMatPCA can intuitively improve the classification perfor- mance. Experimental results in face databases and some benchmark datasets show that F-WMatPCA is effective and competitive than MatPCA. The experimental analysis on face image databases indicates that F-WMatPCA im- proves the recognition accuracy and is more stable and robust in performing classification than the existing method of fuzzy-based F-Fisherfaces.