期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于VMD-PCA和TCN模型的短期电力负荷预测 被引量:6
1
作者 吴嘉雯 谭伦农 《现代电子技术》 2022年第17期173-179,共7页
为提高电力负荷预测的准确性以降低后期电力备用储能建设的成本,需采取合理精确的预测模型预测未来负荷数据,文中提出一种基于变分模态分解(VMD)结合主成分分析(PCA)与时间卷积网络(TCN)组成的电力负荷预测模型。首先,为了提高抗噪性和... 为提高电力负荷预测的准确性以降低后期电力备用储能建设的成本,需采取合理精确的预测模型预测未来负荷数据,文中提出一种基于变分模态分解(VMD)结合主成分分析(PCA)与时间卷积网络(TCN)组成的电力负荷预测模型。首先,为了提高抗噪性和分解效率,采用VMD对原始负荷序列进行分解,分解所得的模态分量通过计算样本熵值(SE)进行复杂度的近似分类,对新序列组分别建立预测模型;然后,采用主成分分析法做特征提取,提取出对预测目标影响较大的影响因素作为模型的输入向量。时间卷积网络作为深度卷积网络的改进算法,在预测精度和时间上都具有较大的优势,在深度学习领域得到了很多的关注,采用该模型进行短期电力负荷预测,最终结果同其他模型的结果相比误差最小,证明了该预测模型的精确可靠性。 展开更多
关键词 短期负荷预测 时间卷积网络 变分模态分解 主成分分析 样本熵 特征提取 影响因素 深度学习
下载PDF
Data-driven real-time prediction for attitude and position of super-large diameter shield using a hybrid deep learning approach
2
作者 Yanbin Fu Lei Chen +4 位作者 Hao Xiong Xiangsheng Chen Andian Lu Yi Zeng Beiling Wang 《Underground Space》 SCIE EI CSCD 2024年第2期275-297,共23页
The presented research introduces a novel hybrid deep learning approach for the dynamic prediction of the attitude and position of super-large diameter shields-a critical consideration for construction safety and tunn... The presented research introduces a novel hybrid deep learning approach for the dynamic prediction of the attitude and position of super-large diameter shields-a critical consideration for construction safety and tunnel lining quality.This study proposes a hybrid deep learning approach for predicting dynamic attitude and position prediction of super-large diameter shield.The approach consists of principal component analysis(PCA)and temporal convolutional network(TCN).The former is used for employing feature level fusion based on features of the shield data to reduce uncertainty,improve accuracy and the data effect,and 9 sets of required principal component characteristic data are obtained.The latter is adopted to process sequence data in predicting the dynamic attitude and position for the advantages and potential of convolution network.The approach’s effectiveness is exemplified using data from a tunnel construction project in China.The obtained results show remarkable accuracy in predicting the global attitude and position,with an average error ratio of less than 2 mm on four shield outputs in 97.30%of cases.Moreover,the approach displays strong performance in accurately predicting sudden fluctuations in shield attitude and position,with an average prediction accuracy of 89.68%.The proposed hybrid model demonstrates superiority over TCN,long short-term memory(LSTM),and recurrent neural network(RNN)in multiple indexes.Shapley additive exPlanations(SHAP)analysis is also performed to investigate the significance of different data features in the prediction process.This study provides a real-time warning for the shield driver to adjust the attitude and position of super-large diameter shields. 展开更多
关键词 Shield attitude and position Super-large diameter shield pca-tcn Deep learning Real-time warning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部