期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于卷积神经网络的PCB缺陷图像识别
被引量:
7
1
作者
瞿栋
汪鹏宇
+2 位作者
黄允
徐海达
张健滔
《计量与测试技术》
2021年第8期21-23,共3页
PCB缺陷图像检测是确保PCB生产质量的重要环节,但传统的人工PCB缺陷检测具有劳动强度大、工作效率低等不足。为此,本文研究了一种基于卷积神经网络的PCB缺陷图像识别方法,建立了包括三种PCB缺陷和无缺陷图像的数据集,基于ResNet101网络...
PCB缺陷图像检测是确保PCB生产质量的重要环节,但传统的人工PCB缺陷检测具有劳动强度大、工作效率低等不足。为此,本文研究了一种基于卷积神经网络的PCB缺陷图像识别方法,建立了包括三种PCB缺陷和无缺陷图像的数据集,基于ResNet101网络模型搭建了PCB缺陷图像识别分类模型。引入迁移学习的方法,基于在大数据集上充分训练好的模型结合PCB图像数据集,并训练该PCB缺陷图像识别模型。实验结果表明,ResNet101模型对无缺陷PCB图像和三类常见PCB缺陷图像的平均识别准确率达到91.98%,验证了该模型对PCB图像识别分类的有效性。
展开更多
关键词
pcb缺陷识别
迁移学习
ResNet101
卷积神经网络
下载PDF
职称材料
题名
基于卷积神经网络的PCB缺陷图像识别
被引量:
7
1
作者
瞿栋
汪鹏宇
黄允
徐海达
张健滔
机构
上海大学机电工程与自动化学院
出处
《计量与测试技术》
2021年第8期21-23,共3页
基金
上海市科技支撑项目(项目编号:18391900900)
上海市自然科学基金资助项目(项目编号:18ZR1414300)。
文摘
PCB缺陷图像检测是确保PCB生产质量的重要环节,但传统的人工PCB缺陷检测具有劳动强度大、工作效率低等不足。为此,本文研究了一种基于卷积神经网络的PCB缺陷图像识别方法,建立了包括三种PCB缺陷和无缺陷图像的数据集,基于ResNet101网络模型搭建了PCB缺陷图像识别分类模型。引入迁移学习的方法,基于在大数据集上充分训练好的模型结合PCB图像数据集,并训练该PCB缺陷图像识别模型。实验结果表明,ResNet101模型对无缺陷PCB图像和三类常见PCB缺陷图像的平均识别准确率达到91.98%,验证了该模型对PCB图像识别分类的有效性。
关键词
pcb缺陷识别
迁移学习
ResNet101
卷积神经网络
Keywords
pcb
defect recognition
transfer learning
ResNet101
convolutional neural network
分类号
TP75 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于卷积神经网络的PCB缺陷图像识别
瞿栋
汪鹏宇
黄允
徐海达
张健滔
《计量与测试技术》
2021
7
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部