期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于PPLCFaster-YOLOv5的PCB表面缺陷快检模型 被引量:1
1
作者 季堂煜 赵倩 +2 位作者 赵琰 余文涛 梁爽 《电子测量技术》 北大核心 2023年第11期115-122,共8页
针对现有PCB表面缺陷检测方法精度低、召回率低以及实时性较差等问题,提出PPLCFaster-YOLOv5模型。该方法以改进后的PPLC-Net作为主干网络,将Focus结构作为网络第0层,提高特征图对位置信息的表达能力。在深度可分离卷积结构内引入通道... 针对现有PCB表面缺陷检测方法精度低、召回率低以及实时性较差等问题,提出PPLCFaster-YOLOv5模型。该方法以改进后的PPLC-Net作为主干网络,将Focus结构作为网络第0层,提高特征图对位置信息的表达能力。在深度可分离卷积结构内引入通道混洗机制,使各分组卷积获取的特征对全局特征具有等贡献度;引入Dropout机制限制不平衡正则化因子。提出低参数量G4Head特征融合网络结构,将更为浅层的信息加入特征融合中,提高模型对缺陷的定位能力;在主干网络与特征融合之间增加残差连接,提高主干网络信息对特征融合的贡献度;采用SIOU损失函数,加速回归框收敛。将训练后的模型采用Flask服务器框架进行部署。实验表明,部署后的PPLCFaster-YOLOv5模型在DeepPCB以及北京大学PCB表面缺陷检测数据集上检测时间可达0.009 s,且准确率、召回率等相比于其他主流模型均获得提升。 展开更多
关键词 目标检测 pcb表面缺陷 YOLOv5 通道混洗 SIOU 微服务部署
下载PDF
基于增强小目标特征提取的PCB板缺陷检测模型 被引量:6
2
作者 季堂煜 赵倩 +2 位作者 余文涛 梁爽 赵琰 《仪表技术与传感器》 CSCD 北大核心 2023年第4期87-92,共6页
针对印制电路板(PCB)表面缺陷所具有的分辨率低、小目标性以及多样性等问题,提出基于YOLOv5的增强小目标特征提取的PCB板缺陷检测模型——SPDYOLOv5模型。在主干网络引入SPDConv,提高主干网络对各尺度特征的提取能力。在主干网络最深层... 针对印制电路板(PCB)表面缺陷所具有的分辨率低、小目标性以及多样性等问题,提出基于YOLOv5的增强小目标特征提取的PCB板缺陷检测模型——SPDYOLOv5模型。在主干网络引入SPDConv,提高主干网络对各尺度特征的提取能力。在主干网络最深层加入CA注意力,加强深层信息的传递能力。提出T3Head特征融合结构,在上下采样阶段融入CBAM注意力机制,加强各尺度间的信息传递能力;借助转置卷积和空间深度卷积,优化特征融合结构对小目标特征的表达能力。在训练过程中,迁移VOC预训练权重加速收敛。采用EIOU-NMS进行后处理,改善模型检测效果。实验结果表明:文中模型在北京大学开源PCB板缺陷数据集上mAP0.5可达92.4%,性能优于其他检测方法。 展开更多
关键词 深度学习 pcb表面缺陷检测 YOLOv5 小目标检测 迁移学习 EIOU-NMS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部