[6,6]-phenyl C61-butyric acid methyl ester: poly (3-hexylthiophene) bulk heterojunction solar cells doped with germanium phthalocyanine or germanium naphthalocyanine were fabricated and characterized. Photovoltaic pro...[6,6]-phenyl C61-butyric acid methyl ester: poly (3-hexylthiophene) bulk heterojunction solar cells doped with germanium phthalocyanine or germanium naphthalocyanine were fabricated and characterized. Photovoltaic properties of the solar cells with inverted structures were investigated by optical absorption, current density-voltage characteristic and incident photon to current conversion efficiency. These germanium phthalocyanine and germanium naphthalocyanine blended as the third component absorbed light with wavelength longer than 700 nm. Morphology of solar cells was investigated by atomic force microscopy, and energy levels of the solar cells were discussed for power conversion efficiency.展开更多
The surface composition of poly(3-hexylthiophene-2,5-diyl) and fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (P3HT/PCBM) blend films could be changed by controlling the film formation process via...The surface composition of poly(3-hexylthiophene-2,5-diyl) and fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (P3HT/PCBM) blend films could be changed by controlling the film formation process via using mixed solvents with different evaporation rates. The second solvent, with a higher boiling point than that of the first solvent and much better solubility for PCBM than P3HT, is chosen to mix with the first solvent with a lower boiling point and good solubility for both PCBM and P3HT. The slow evaporation rate of the second solvent provides enough time for PCBM to diffuse upwards during the solvent evaporation. Thus, the weight ratio of PCBM and P3HT (mpcBM/mp3HT) at surface of the blend films was varied from ca. 0.1 to ca. 0.72, i.e., it increases about seven times by changing from single solvent to mixed solvents. Meanwhile, the mixed solvents were in favor to form P3HT naonofiber network and enhance phase separation of P3HT/PCBM blend films. As a result, the power conversion efficiency of the device from mixed solvents with slow evaporation process was about 1.5 times of the one from single solvents.展开更多
A selective solvent vapor, i.e., cyclohexanone or isopropyl benzene, which is a poor solvent for poly(3-hexylthiophene-2,5-diyl) (P3HT) and a good solvent for fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ...A selective solvent vapor, i.e., cyclohexanone or isopropyl benzene, which is a poor solvent for poly(3-hexylthiophene-2,5-diyl) (P3HT) and a good solvent for fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), was employed to reduce the size of PCBM aggregates and prolong the formation time of big PCBM aggregates in P3HT/PCBM film. PCBM nucleates and aggregates of 10-20 nm scale form in the first few minutes annealing. Then the size of PCBM aggregates kept unchanged until annealing for 60 min. Finally, larger PCBM aggregates of micron-size formed hours later. On the contrary, the growth rate of PCBM aggregates was faster and their size was larger when treated with a good solvent vapor for both components. The P3HT crystallinity was the same with different types of annealing solvents, although the rate of P3HT self-organization was decreased after a selective solvent vapor annealing. Because of the smaller size of phase separation, the device annealed in a selective solvent vapor for 30 min had a higher PCE than that annealed in a good solvent vapor.展开更多
A low temperature sol-gel process was used to fabricate zinc-oxide and yttrium-doped zinc oxide layers. These zinc-oxide and yttrium-doped ZnO films were used as electron transport layers in conjunction with P<sub&...A low temperature sol-gel process was used to fabricate zinc-oxide and yttrium-doped zinc oxide layers. These zinc-oxide and yttrium-doped ZnO films were used as electron transport layers in conjunction with P<sub>3</sub>HT and PC<sub>16</sub>BM type solar cells. It was demonstrated that annealing and doping of electron transport layer influenced the overall organic solar cells performance. Anneals of ~ 150?C provided the highest device performance. Compared to the undoped zinc oxide, the device with yttrium doped zinc oxide layers showed improved efficiency by about 30%. Furthermore an equivalent circuit was proposed to understand the connection between the electrical and optical characteristics of the device. Comparisons between the simulated and experimental current-voltage(I-V) curves displayed only a 1.2% variation between the curves. Clearly, our experimental and simulated studies provide new insight on the equivalent circuit models for inverted organic solar cells and further improvement on photovoltaic efficiency.展开更多
文摘[6,6]-phenyl C61-butyric acid methyl ester: poly (3-hexylthiophene) bulk heterojunction solar cells doped with germanium phthalocyanine or germanium naphthalocyanine were fabricated and characterized. Photovoltaic properties of the solar cells with inverted structures were investigated by optical absorption, current density-voltage characteristic and incident photon to current conversion efficiency. These germanium phthalocyanine and germanium naphthalocyanine blended as the third component absorbed light with wavelength longer than 700 nm. Morphology of solar cells was investigated by atomic force microscopy, and energy levels of the solar cells were discussed for power conversion efficiency.
基金financially supported by the National Natural Science Foundation of China (Nos. 20621401, 20834005,51073151)the Ministry of Science and Technology of China (No. 2009CB623604)
文摘The surface composition of poly(3-hexylthiophene-2,5-diyl) and fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (P3HT/PCBM) blend films could be changed by controlling the film formation process via using mixed solvents with different evaporation rates. The second solvent, with a higher boiling point than that of the first solvent and much better solubility for PCBM than P3HT, is chosen to mix with the first solvent with a lower boiling point and good solubility for both PCBM and P3HT. The slow evaporation rate of the second solvent provides enough time for PCBM to diffuse upwards during the solvent evaporation. Thus, the weight ratio of PCBM and P3HT (mpcBM/mp3HT) at surface of the blend films was varied from ca. 0.1 to ca. 0.72, i.e., it increases about seven times by changing from single solvent to mixed solvents. Meanwhile, the mixed solvents were in favor to form P3HT naonofiber network and enhance phase separation of P3HT/PCBM blend films. As a result, the power conversion efficiency of the device from mixed solvents with slow evaporation process was about 1.5 times of the one from single solvents.
基金supported by the National Natural Science Foundation of China(51273191,51073151)the National Basic Research Program of China(2009CB930603,2009CB623604)
文摘A selective solvent vapor, i.e., cyclohexanone or isopropyl benzene, which is a poor solvent for poly(3-hexylthiophene-2,5-diyl) (P3HT) and a good solvent for fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), was employed to reduce the size of PCBM aggregates and prolong the formation time of big PCBM aggregates in P3HT/PCBM film. PCBM nucleates and aggregates of 10-20 nm scale form in the first few minutes annealing. Then the size of PCBM aggregates kept unchanged until annealing for 60 min. Finally, larger PCBM aggregates of micron-size formed hours later. On the contrary, the growth rate of PCBM aggregates was faster and their size was larger when treated with a good solvent vapor for both components. The P3HT crystallinity was the same with different types of annealing solvents, although the rate of P3HT self-organization was decreased after a selective solvent vapor annealing. Because of the smaller size of phase separation, the device annealed in a selective solvent vapor for 30 min had a higher PCE than that annealed in a good solvent vapor.
文摘A low temperature sol-gel process was used to fabricate zinc-oxide and yttrium-doped zinc oxide layers. These zinc-oxide and yttrium-doped ZnO films were used as electron transport layers in conjunction with P<sub>3</sub>HT and PC<sub>16</sub>BM type solar cells. It was demonstrated that annealing and doping of electron transport layer influenced the overall organic solar cells performance. Anneals of ~ 150?C provided the highest device performance. Compared to the undoped zinc oxide, the device with yttrium doped zinc oxide layers showed improved efficiency by about 30%. Furthermore an equivalent circuit was proposed to understand the connection between the electrical and optical characteristics of the device. Comparisons between the simulated and experimental current-voltage(I-V) curves displayed only a 1.2% variation between the curves. Clearly, our experimental and simulated studies provide new insight on the equivalent circuit models for inverted organic solar cells and further improvement on photovoltaic efficiency.
基金Chinese National Natural Science Foundation(51202138,51202140)Natural Science Foundation of Shanghai(12ZR1410500)Shanghai University Innovation Fund(2012-120417)