Neurons are highly polarized cells with axons reaching over a meter long in adult humans.To survive and maintain their proper function,neurons depend on specific mechanisms that regulate spatiotemporal signaling and m...Neurons are highly polarized cells with axons reaching over a meter long in adult humans.To survive and maintain their proper function,neurons depend on specific mechanisms that regulate spatiotemporal signaling and metabolic events,which need to be carried out at the right place,time,and intensity.Such mechanisms include axonal transport,local synthesis,and liquid-liquid phase separations.Alterations and malfunctions in these processes are correlated to neurodegenerative diseases such as amyotrophic lateral sclerosis(ALS).展开更多
Research on the synthesis of superoxide dismutase mimics by chemical and biologi-cal synthetic methods were reviewed.The advantages and limitations were analyzed.A prospect for the future development of superoxide dis...Research on the synthesis of superoxide dismutase mimics by chemical and biologi-cal synthetic methods were reviewed.The advantages and limitations were analyzed.A prospect for the future development of superoxide dismutase mimics is proposed.展开更多
Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts...Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested.展开更多
Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficien...Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficiency.Herein,we explore an economic and environmentally friendly method for synthesizing hierarchical NaX zeolite that exhibits improved catalytic performance in the Knoevenagel condensation reaction for producing the useful fine chemical 2-cyano-3-phenylacrylate.The synthesis was achieved via a low-temperature activation of kaolinite and subsequent in-situ transformation strategy without any template or seed.Systematic characterizations reveal that the synthesized NaX zeolite has both intercrystalline and intra-crystalline mesopores,smaller crystal size,and larger external specific surface area compared to commercial NaX zeolite.Detailed mechanism investigations show that the inter-crystalline mesopores are generated by stacking smaller crystals formed from in-situ crystallization of the depolymerized kaolinite,and the intra-crystalline mesopores are inherited from the pores in the depolymerized kaolinite.This synthesis strategy provides an energy-saving and effective way to construct hierarchical zeolites,which may gain wide applications in fine chemical manufacturing.展开更多
In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocol...In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.展开更多
Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-...Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.展开更多
Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such ...Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such as Fischer-Tropsch synthesis(FTS).Herein,we engineered ruthenium(Ru)FTS catalysts supported on N-doped carbon overlayers on TiO_(2)nanoparticles.By regulating the carbonization temperatures,we successfully controlled the types and contents of N dopants to identify their impacts on metal-support interactions(MSI).Our fi ndings revealed that N dopants establish a favorable surface environment for electron transfer from the support to the Ru species.Moreover,pyridinic N demonstrates the highest electron-donating ability,followed by pyrrolic N and graphitic N.In addition to realizing excellent catalytic stability,strengthening the interaction between Ru sites and N dopants increases the Ru^(0)/Ru^(δ+)ratios to enlarge the active site numbers and surface electron density of Ru species to enhance the strength of adsorbed CO.Consequently,it improves the catalyst’s overall performance,encompassing intrinsic and apparent activities,as well as its ability for carbon chain growth.Accordingly,the as-synthesized Ru/TiO_(2)@CN-700 catalyst with abundant pyridine N dopants exhibits a superhigh C_(5+)time yield of 219.4 mol CO/(mol Ru·h)and C_(5+)selectivity of 85.5%.展开更多
Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets ...Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets vertically aligned on activated carbon cloth substrate,which was in situ transformed from Co-metal-organic framework materials nano-columns by a simple ion exchange process at room temperature.Due to the amorphous and vertically aligned ultrathin structure of NiCo-LDH,the NiCo-LDH/activated carbon cloth composites present high areal capacities of 3770 and 1480 mF cm^(-2)as cathode and anode at 2 mA cm^(-2),and 79.5%and 80%capacity have been preserved at 50 mA cm^(-2).In the meantime,they all showed excellent cycling performance with negligible change after>10000 cycles.By fabricating them into an asymmetric supercapacitor,the device achieves high energy densities(5.61 mWh cm^(-2)and 0.352 mW cm^(-3)).This work provides an innovative strategy for simplifying the design of supercapacitors as well as providing a new understanding of improving the rate capabilities/cycling stability of NiCo-LDH materials.展开更多
Gene synthesis has provided important contributions in various fields including genomics and medicine. Current genes are 7 - 30 cents depending on the assembly and sequencing methods performed. Demand for gene synthes...Gene synthesis has provided important contributions in various fields including genomics and medicine. Current genes are 7 - 30 cents depending on the assembly and sequencing methods performed. Demand for gene synthesis has been increasing for the past few decades, yet available methods remain expensive. A solution to this problem involves microchip-derived oligonucleotides (oligos), an oligo pool with a substantial number of oligo fragments. Microchips have been proposed as a tool for gene synthesis, but this approach has been criticized for its high error rate during sequencing. This study tests a possible cost-effective method for gene synthesis utilizing fragment assembly and golden gate assembly, which can be employed for quicker manufacturing and efficient execution of genes in the near future. The droplet method was tested in two trials to determine the viability of the method through the accuracy of the oligos sequenced. A preliminary research experiment was performed to determine the efficacy of oligo lengths ranging from two to four overlapping oligos through Gibson assembly. Of the three oligo lengths tested, only two fragment oligos were correctly sequenced. Two fragment oligos were used for the second experiment, which determined the efficacy of the droplet method in reducing gene synthesis cost and speed. The first trial utilized a high-fidelity polymerase and resulted in 3% correctly sequenced oligos, so the second trial utilized a non-high-fidelity polymerase, resulting in 8% correctly sequenced oligos. After calculating, the cost of gene synthesis lowers down to 0.8 cents/base. The final calculated cost of 0.8 cents/base is significantly cheaper than other manufacturing costs of 7 - 30 cents/base. Reducing the cost of gene synthesis provides new insight into the cost-effectiveness of present technologies and protocols and has the potential to benefit the fields of bioengineering and gene therapy.展开更多
Nanotechnology is a rapidly growing field in biomedical engineering with references to efficiency, safety, and cost-effective approaches. Herein, the objective of this study was to examine an innovative approach to ra...Nanotechnology is a rapidly growing field in biomedical engineering with references to efficiency, safety, and cost-effective approaches. Herein, the objective of this study was to examine an innovative approach to rapidly synthesis silver nanoparticles from an aqueous extract of medicinal mushroom Ganoderma lucidum (also known as reishi). The structural and dimensional dispersion of the biosynthesized silver nanoparticles from reishi was confirmed by UV-Vis spectrophotometer (UV-Vis) and Scanning Electron Microscopy (SEM) analysis. Additionally, the biosynthesized silver nanoparticles from resihi were used to explore their potential antimicrobial activity against Staphylococcus aureus and Micrococcus luteus and Escherichia coli and Klebsiella pneumoniae. The results from this study revealed that the silver nanoparticles mediated by reishi adopted a spherical shape morphology with sizes, less than 100 nm and revealed strong absorption plasmon band at 440 nm. Furthermore, the biosynthesized silver nanoparticles from reishi exhibited antibacterial activity against the tested S. aureus and M. luteus and E. coli and K. pneumoniae by altering their morphology which signifies their biomedical potential.展开更多
Polymer-based photoanodes for the water oxidation reaction have recently garnered attention,with carbon nitride standing out due to its numerous advantages.This study focuses on synthesizing crystalline carbon nitride...Polymer-based photoanodes for the water oxidation reaction have recently garnered attention,with carbon nitride standing out due to its numerous advantages.This study focuses on synthesizing crystalline carbon nitride photoanodes,specifically poly(heptazine imide)(PHI),and explores the role of salts in their production.Using a binary molten salt system,optimal photocurrent density of 365μA·cm^(−2)was achieved with a voltage bias of 1.23 V versus the reversible hydrogen electrode under AM 1.5G illumination,this performance is ca.18 times to the pristine PCN photoanode.In this process,NH_(4)SCN facilitates the growth of SnS_(2)seeding layers,while K_(2)CO_(3)enhances film crystallinity.In situ electrochemical analyses show that this salt combination improves photoexcited charge transfer efficiency and minimizes resistance in the SnS_(2)layer.This study clarifies the role of salts in synthesizing the PHI photoanode and provides insights for designing high-crystallinity carbon nitride-based functional films.展开更多
Green synthesis of silver nanoparticles (AgNPs) using aqueous extracts of orange and lemon peels, as a reducing agent, and silver nitrate salts as a source of silver ions is a promising field of research due to the ve...Green synthesis of silver nanoparticles (AgNPs) using aqueous extracts of orange and lemon peels, as a reducing agent, and silver nitrate salts as a source of silver ions is a promising field of research due to the versatility of biomedical applications of metal nanoparticles. In this paper, AgNPs were synthetized at different reaction parameters such as the type and concentration of the extracts, metal salt concentration, temperature, speed stirring, and pH. The antibacterial properties of the obtained silver nanoparticles against E. coli, as well as the physical and chemical characteristics of the synthesized silver nanoparticles, were investigated. UV-Vis spectroscopy was used to confirm the formation of AgNPs. In addition to green biogenic synthesis, chemical synthesis of silver nanoparticles was also carried out. The optimal temperature for extraction was 65˚C, while for the synthesis of AgNPs was 35˚C. The synthesis is carried out in an acidic environment (pH = 4.7 orange and pH = 3.8 lemon), neutral (pH = 7) and alkaline (pH = 10), then for different concentrations of silver nitrate solution (0.5 mM - 1 mM), optimal time duration of the reaction was 60 min and optimal stirring speed rotation was 250 rpm on the magnetic stirrer. The physical properties of the synthesized silver nanoparticles (conductivity, density and refractive index) were also studied, and the passage of laser light through the obtained solution and distilled water was compared. Positive inhibitory effect on the growth of new Escherichia coli colonies have shown AgNPs synthesized at a basic pH value and at a 0.1 mM AgNO<sub>3</sub> using orange or lemon peel extract, while for a 0.5 mM AgNO<sub>3 </sub>using lemon peel extract.展开更多
The coal-to-ethanol process,as the clean coal utilization,faces challenges from the energy-intensive distillation that separates multi-component effluents for pure ethanol.Referring to at least eight columns,the synth...The coal-to-ethanol process,as the clean coal utilization,faces challenges from the energy-intensive distillation that separates multi-component effluents for pure ethanol.Referring to at least eight columns,the synthesis of the ethanol distillation system is impracticable for exhaustive comparison and difficult for conventional superstructure-based optimization as rigorous models are used.This work adopts a superstructure-based framework,which combines the strategy that adaptively selects branches of the state-equipment network and the parallel stochastic algorithm for process synthesis.High-performance computing significantly reduces time consumption,and the adaptive strategy substantially lowers the complexity of the superstructure model.Moreover,parallel computing,elite search,population redistribution,and retention strategies for irrelevant parameters are used to improve the optimization efficiency further.The optimization terminates after 3000 generations,providing a flowsheet solution that applies two non-sharp splitting options in its distillation sequence.As a result,the 59-dimension superstructure-based optimization was solved efficiently via a differential evolution algorithm,and a high-quality solution with a 28.34%lower total annual cost than the benchmark was obtained.Meanwhile,the solution of the superstructure-based optimization is comparable to that obtained by optimizing a single specific configuration one by one.It indicates that the superstructure-based optimization that combines the adaptive strategy can be a promising approach to handling the process synthesis of large-scale and complex chemical processes.展开更多
Oxynitride semiconductors are promising photocatalyst materials for visible light-driven water splitting,while the synthesis of well crystalized oxynitride still remains challenge.In present work,narrow-bandgap TaON n...Oxynitride semiconductors are promising photocatalyst materials for visible light-driven water splitting,while the synthesis of well crystalized oxynitride still remains challenge.In present work,narrow-bandgap TaON nanoparticles are synthesized via heating a vacuum-sealed mixture of KTaO_(3),Ta and NH_(4)Cl.This method possesses multiple advantages in terms of lower calcination parameter,higher N conversion efficiency and superior photocatalytic activity in comparison with the traditional thermal ammonolysis using NH_(3) gas as a nitrogen source.Through the analysis of intermediates produced upon the elevation of heating temperature,a gas-solid-phase reaction between TaCl_(5) and Ta_(2)O_(5) is demonstrated as the final step,which is conducive to decreasing thermal energy barrier and accelerating nitridation process.Precise control of preparation conditions,including calcination temperature and duration,allows for the regulation of surface O/N ratio of TaON particles to unity,resulting in optimized photocat-alytic activity.Photoelectrochemical assessment and intensity modulated photocurrent spectroscopy provide convincing evidence for improved charge transfer effciency of photoexcited holes at TaON surface.A Z-scheme overall water splitting is accomplished by employing the TaON as an effective oxygen evolution photocatalyst,SrTiO_(3):Rh as a hydrogen evolution photocatalyst,and reduced graphene oxide(rGO)as a solid-state electron mediator.This work presents a promising strategy for the synthesis of high-quality oxynitride materials in application to photocatalytic water splitting.展开更多
Background: Recently micro-organisms that synthesize extended-spectrum β-lactamase (ESBLs) were increased. The peculiarities of ESBL synthesis of Escherichia coli and Klebsiella pneumoniae strains that cause nosocomi...Background: Recently micro-organisms that synthesize extended-spectrum β-lactamase (ESBLs) were increased. The peculiarities of ESBL synthesis of Escherichia coli and Klebsiella pneumoniae strains that cause nosocomial urinary tract infections, surgical site infections and pneumonia in surgical clinic were studied. ESBL synthesis were observed 38.9% of E. coli strains obtained from urine, 92.3% of strains obtained from surgical site infections, and 50% of strains obtained from sputum. ESBL synthesis were observed 37.5% of K. pneumoniae strains obtained from urine, 85.7% of strains obtained from surgical site infections, and 60% of strains obtained from sputum. Different levels of ESBL synthesize of E. coli and K. pneumoniae strains isolated from different pattern is discussed. Conclusion. ESBL synthesis is common in E. coli and K. pneumoniae strains, which cause nosocomial infections. The frequency of occurrence of ESBL s synthesis among of these strains depends on clinical forms of nosocomial infections.展开更多
文摘Neurons are highly polarized cells with axons reaching over a meter long in adult humans.To survive and maintain their proper function,neurons depend on specific mechanisms that regulate spatiotemporal signaling and metabolic events,which need to be carried out at the right place,time,and intensity.Such mechanisms include axonal transport,local synthesis,and liquid-liquid phase separations.Alterations and malfunctions in these processes are correlated to neurodegenerative diseases such as amyotrophic lateral sclerosis(ALS).
文摘Research on the synthesis of superoxide dismutase mimics by chemical and biologi-cal synthetic methods were reviewed.The advantages and limitations were analyzed.A prospect for the future development of superoxide dismutase mimics is proposed.
基金the support from the CIPHER Project(IIID 2018-008)funded by the Commission on Higher Education-Philippine California Advanced Research Institutes(CHED-PCARI)。
文摘Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested.
基金The financial supports from the National Natural Science Foundation of China (22178059, 22208054 and 22072019)Natural Science Foundation of Fujian Province, China (2020J01513)+1 种基金Sinochem Quanzhou Energy Technology Co., Ltd. (ZHQZKJ-19-F-ZS0076)Qingyuan Innovation Laboratory (00121002)
文摘Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficiency.Herein,we explore an economic and environmentally friendly method for synthesizing hierarchical NaX zeolite that exhibits improved catalytic performance in the Knoevenagel condensation reaction for producing the useful fine chemical 2-cyano-3-phenylacrylate.The synthesis was achieved via a low-temperature activation of kaolinite and subsequent in-situ transformation strategy without any template or seed.Systematic characterizations reveal that the synthesized NaX zeolite has both intercrystalline and intra-crystalline mesopores,smaller crystal size,and larger external specific surface area compared to commercial NaX zeolite.Detailed mechanism investigations show that the inter-crystalline mesopores are generated by stacking smaller crystals formed from in-situ crystallization of the depolymerized kaolinite,and the intra-crystalline mesopores are inherited from the pores in the depolymerized kaolinite.This synthesis strategy provides an energy-saving and effective way to construct hierarchical zeolites,which may gain wide applications in fine chemical manufacturing.
文摘In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.
基金supported by the National Natural Science Foundation of China(22025801)and(22208190)National Postdoctoral Program for Innovative Talents(BX2021146)Shuimu Tsinghua Scholar Program(2021SM055).
文摘Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.
基金the financial support from by the National Key Research and Development Program of China(No.2022YFB4101800)National Natural Science Foundation of China(No.22278298)Program for Introducing Talents of Discipline to Universities of China(No.BP0618007).
文摘Nitrogen(N)-doped carbon materials as metal catalyst supports have attracted signifi cant attention,but the eff ect of N dopants on catalytic performance remains unclear,especially for complex reaction processes such as Fischer-Tropsch synthesis(FTS).Herein,we engineered ruthenium(Ru)FTS catalysts supported on N-doped carbon overlayers on TiO_(2)nanoparticles.By regulating the carbonization temperatures,we successfully controlled the types and contents of N dopants to identify their impacts on metal-support interactions(MSI).Our fi ndings revealed that N dopants establish a favorable surface environment for electron transfer from the support to the Ru species.Moreover,pyridinic N demonstrates the highest electron-donating ability,followed by pyrrolic N and graphitic N.In addition to realizing excellent catalytic stability,strengthening the interaction between Ru sites and N dopants increases the Ru^(0)/Ru^(δ+)ratios to enlarge the active site numbers and surface electron density of Ru species to enhance the strength of adsorbed CO.Consequently,it improves the catalyst’s overall performance,encompassing intrinsic and apparent activities,as well as its ability for carbon chain growth.Accordingly,the as-synthesized Ru/TiO_(2)@CN-700 catalyst with abundant pyridine N dopants exhibits a superhigh C_(5+)time yield of 219.4 mol CO/(mol Ru·h)and C_(5+)selectivity of 85.5%.
基金the funding from Natural Science Foundation of China(No.52003163)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515010670)+1 种基金Science and Technology Innovation Commission of Shenzhen(Nos.KQTD20170810105439418 and 20200812112006001)NTUT-SZU Joint Research Program(Nos.2022005 and 2022015)
文摘Developing a simple scalable method to fabricate electrodes with high capacity and wide voltage range is desired for the real use of electrochemical supercapacitors.Herein,we synthesized amorphous NiCo-LDH nanosheets vertically aligned on activated carbon cloth substrate,which was in situ transformed from Co-metal-organic framework materials nano-columns by a simple ion exchange process at room temperature.Due to the amorphous and vertically aligned ultrathin structure of NiCo-LDH,the NiCo-LDH/activated carbon cloth composites present high areal capacities of 3770 and 1480 mF cm^(-2)as cathode and anode at 2 mA cm^(-2),and 79.5%and 80%capacity have been preserved at 50 mA cm^(-2).In the meantime,they all showed excellent cycling performance with negligible change after>10000 cycles.By fabricating them into an asymmetric supercapacitor,the device achieves high energy densities(5.61 mWh cm^(-2)and 0.352 mW cm^(-3)).This work provides an innovative strategy for simplifying the design of supercapacitors as well as providing a new understanding of improving the rate capabilities/cycling stability of NiCo-LDH materials.
文摘Gene synthesis has provided important contributions in various fields including genomics and medicine. Current genes are 7 - 30 cents depending on the assembly and sequencing methods performed. Demand for gene synthesis has been increasing for the past few decades, yet available methods remain expensive. A solution to this problem involves microchip-derived oligonucleotides (oligos), an oligo pool with a substantial number of oligo fragments. Microchips have been proposed as a tool for gene synthesis, but this approach has been criticized for its high error rate during sequencing. This study tests a possible cost-effective method for gene synthesis utilizing fragment assembly and golden gate assembly, which can be employed for quicker manufacturing and efficient execution of genes in the near future. The droplet method was tested in two trials to determine the viability of the method through the accuracy of the oligos sequenced. A preliminary research experiment was performed to determine the efficacy of oligo lengths ranging from two to four overlapping oligos through Gibson assembly. Of the three oligo lengths tested, only two fragment oligos were correctly sequenced. Two fragment oligos were used for the second experiment, which determined the efficacy of the droplet method in reducing gene synthesis cost and speed. The first trial utilized a high-fidelity polymerase and resulted in 3% correctly sequenced oligos, so the second trial utilized a non-high-fidelity polymerase, resulting in 8% correctly sequenced oligos. After calculating, the cost of gene synthesis lowers down to 0.8 cents/base. The final calculated cost of 0.8 cents/base is significantly cheaper than other manufacturing costs of 7 - 30 cents/base. Reducing the cost of gene synthesis provides new insight into the cost-effectiveness of present technologies and protocols and has the potential to benefit the fields of bioengineering and gene therapy.
文摘Nanotechnology is a rapidly growing field in biomedical engineering with references to efficiency, safety, and cost-effective approaches. Herein, the objective of this study was to examine an innovative approach to rapidly synthesis silver nanoparticles from an aqueous extract of medicinal mushroom Ganoderma lucidum (also known as reishi). The structural and dimensional dispersion of the biosynthesized silver nanoparticles from reishi was confirmed by UV-Vis spectrophotometer (UV-Vis) and Scanning Electron Microscopy (SEM) analysis. Additionally, the biosynthesized silver nanoparticles from resihi were used to explore their potential antimicrobial activity against Staphylococcus aureus and Micrococcus luteus and Escherichia coli and Klebsiella pneumoniae. The results from this study revealed that the silver nanoparticles mediated by reishi adopted a spherical shape morphology with sizes, less than 100 nm and revealed strong absorption plasmon band at 440 nm. Furthermore, the biosynthesized silver nanoparticles from reishi exhibited antibacterial activity against the tested S. aureus and M. luteus and E. coli and K. pneumoniae by altering their morphology which signifies their biomedical potential.
文摘Polymer-based photoanodes for the water oxidation reaction have recently garnered attention,with carbon nitride standing out due to its numerous advantages.This study focuses on synthesizing crystalline carbon nitride photoanodes,specifically poly(heptazine imide)(PHI),and explores the role of salts in their production.Using a binary molten salt system,optimal photocurrent density of 365μA·cm^(−2)was achieved with a voltage bias of 1.23 V versus the reversible hydrogen electrode under AM 1.5G illumination,this performance is ca.18 times to the pristine PCN photoanode.In this process,NH_(4)SCN facilitates the growth of SnS_(2)seeding layers,while K_(2)CO_(3)enhances film crystallinity.In situ electrochemical analyses show that this salt combination improves photoexcited charge transfer efficiency and minimizes resistance in the SnS_(2)layer.This study clarifies the role of salts in synthesizing the PHI photoanode and provides insights for designing high-crystallinity carbon nitride-based functional films.
文摘Green synthesis of silver nanoparticles (AgNPs) using aqueous extracts of orange and lemon peels, as a reducing agent, and silver nitrate salts as a source of silver ions is a promising field of research due to the versatility of biomedical applications of metal nanoparticles. In this paper, AgNPs were synthetized at different reaction parameters such as the type and concentration of the extracts, metal salt concentration, temperature, speed stirring, and pH. The antibacterial properties of the obtained silver nanoparticles against E. coli, as well as the physical and chemical characteristics of the synthesized silver nanoparticles, were investigated. UV-Vis spectroscopy was used to confirm the formation of AgNPs. In addition to green biogenic synthesis, chemical synthesis of silver nanoparticles was also carried out. The optimal temperature for extraction was 65˚C, while for the synthesis of AgNPs was 35˚C. The synthesis is carried out in an acidic environment (pH = 4.7 orange and pH = 3.8 lemon), neutral (pH = 7) and alkaline (pH = 10), then for different concentrations of silver nitrate solution (0.5 mM - 1 mM), optimal time duration of the reaction was 60 min and optimal stirring speed rotation was 250 rpm on the magnetic stirrer. The physical properties of the synthesized silver nanoparticles (conductivity, density and refractive index) were also studied, and the passage of laser light through the obtained solution and distilled water was compared. Positive inhibitory effect on the growth of new Escherichia coli colonies have shown AgNPs synthesized at a basic pH value and at a 0.1 mM AgNO<sub>3</sub> using orange or lemon peel extract, while for a 0.5 mM AgNO<sub>3 </sub>using lemon peel extract.
文摘The coal-to-ethanol process,as the clean coal utilization,faces challenges from the energy-intensive distillation that separates multi-component effluents for pure ethanol.Referring to at least eight columns,the synthesis of the ethanol distillation system is impracticable for exhaustive comparison and difficult for conventional superstructure-based optimization as rigorous models are used.This work adopts a superstructure-based framework,which combines the strategy that adaptively selects branches of the state-equipment network and the parallel stochastic algorithm for process synthesis.High-performance computing significantly reduces time consumption,and the adaptive strategy substantially lowers the complexity of the superstructure model.Moreover,parallel computing,elite search,population redistribution,and retention strategies for irrelevant parameters are used to improve the optimization efficiency further.The optimization terminates after 3000 generations,providing a flowsheet solution that applies two non-sharp splitting options in its distillation sequence.As a result,the 59-dimension superstructure-based optimization was solved efficiently via a differential evolution algorithm,and a high-quality solution with a 28.34%lower total annual cost than the benchmark was obtained.Meanwhile,the solution of the superstructure-based optimization is comparable to that obtained by optimizing a single specific configuration one by one.It indicates that the superstructure-based optimization that combines the adaptive strategy can be a promising approach to handling the process synthesis of large-scale and complex chemical processes.
基金supported by the Starting Foundation of ShanghaiTech Universitythe Double First-Class Initiative Fund of ShanghaiTech Universitythe National Natural Science Foundation of China (21972092)
文摘Oxynitride semiconductors are promising photocatalyst materials for visible light-driven water splitting,while the synthesis of well crystalized oxynitride still remains challenge.In present work,narrow-bandgap TaON nanoparticles are synthesized via heating a vacuum-sealed mixture of KTaO_(3),Ta and NH_(4)Cl.This method possesses multiple advantages in terms of lower calcination parameter,higher N conversion efficiency and superior photocatalytic activity in comparison with the traditional thermal ammonolysis using NH_(3) gas as a nitrogen source.Through the analysis of intermediates produced upon the elevation of heating temperature,a gas-solid-phase reaction between TaCl_(5) and Ta_(2)O_(5) is demonstrated as the final step,which is conducive to decreasing thermal energy barrier and accelerating nitridation process.Precise control of preparation conditions,including calcination temperature and duration,allows for the regulation of surface O/N ratio of TaON particles to unity,resulting in optimized photocat-alytic activity.Photoelectrochemical assessment and intensity modulated photocurrent spectroscopy provide convincing evidence for improved charge transfer effciency of photoexcited holes at TaON surface.A Z-scheme overall water splitting is accomplished by employing the TaON as an effective oxygen evolution photocatalyst,SrTiO_(3):Rh as a hydrogen evolution photocatalyst,and reduced graphene oxide(rGO)as a solid-state electron mediator.This work presents a promising strategy for the synthesis of high-quality oxynitride materials in application to photocatalytic water splitting.
文摘Background: Recently micro-organisms that synthesize extended-spectrum β-lactamase (ESBLs) were increased. The peculiarities of ESBL synthesis of Escherichia coli and Klebsiella pneumoniae strains that cause nosocomial urinary tract infections, surgical site infections and pneumonia in surgical clinic were studied. ESBL synthesis were observed 38.9% of E. coli strains obtained from urine, 92.3% of strains obtained from surgical site infections, and 50% of strains obtained from sputum. ESBL synthesis were observed 37.5% of K. pneumoniae strains obtained from urine, 85.7% of strains obtained from surgical site infections, and 60% of strains obtained from sputum. Different levels of ESBL synthesize of E. coli and K. pneumoniae strains isolated from different pattern is discussed. Conclusion. ESBL synthesis is common in E. coli and K. pneumoniae strains, which cause nosocomial infections. The frequency of occurrence of ESBL s synthesis among of these strains depends on clinical forms of nosocomial infections.