Obviously, the outside annual climate change caused either by a major solar input during the hottest period or by a temperature drop during the coldest period leads to discomfort in inside buildings. This effect can b...Obviously, the outside annual climate change caused either by a major solar input during the hottest period or by a temperature drop during the coldest period leads to discomfort in inside buildings. This effect can be reduced by storing heat transmitted in phase change materials (PCM) as latent heat, in order to ensure a good situation of thermal comfort during all months of the year. In this work, thermal behavior of two roofing systems is studied. One roof is constituted only by usual materials in building. In the other, two phase change materials (PCM) are introduced according to three configurations. Study is interested to assess incorporation effect of two PCMs within the roof and to evaluate the optimum locations to reduce the energy consumption of air-conditioned room. Mono-dimensional numerical model validated analytically and experimentally, is used to carry out a parametric analyzes to determine characteristics of the layers in which the roofs are formed regardless of external climate effect. Numerical calculations are performed for three configurations of roof. Results show that insertion of phase change materials in roof provides best energy consumption saving regardless annual climate change. Generally, the three configurations lead to different results, depending on the combination of PCMs. This difference becomes less important when selection of PCMs take account the thermal comfort level and temperatures of hottest and coldest periods.展开更多
为提高相变屋面的性能,本文提出了一种冷却塔-内嵌管式相变屋面复合降温系统。基于焓法,建立了系统的数值计算传热模型,数值研究了该系统在福州地区的热性能及节能潜力,探讨了相变材料相变温度、相变材料导热系数以及内嵌管间距的影响,...为提高相变屋面的性能,本文提出了一种冷却塔-内嵌管式相变屋面复合降温系统。基于焓法,建立了系统的数值计算传热模型,数值研究了该系统在福州地区的热性能及节能潜力,探讨了相变材料相变温度、相变材料导热系数以及内嵌管间距的影响,并与传统的无内嵌管相变屋面进行了对比分析。研究发现,相变温度越高,复合降温系统的相变材料越容易完成凝固,但潜热利用率随相变温度的升高呈现先增加后降低的趋势。当相变温度由35℃升高到41℃时,屋面的累计冷负荷由383 k J/m^(2)增大到400 k J/m^(2),增加了4.4%。相变材料导热系数越高、内嵌管间距越小,复合降温系统相比于传统无内嵌管相变屋面的潜热利用优势越显著。当导热系数由0.2 W/(m·K)增加到0.8 W/(m·K)时,复合降温系统的潜热利用率和屋面累计冷负荷分别增加了36.3%和5.1%,而无内嵌管相变屋面的潜热利用率和屋面累计冷负荷分别升高了33.1%和6.3%。当内嵌管间距由500 mm减少到100 mm时,复合降温系统比传统无内嵌管相变屋面的潜热利用提高率由2.7%增大到16.3%,累计冷负荷降低率由3.8%升高到10.9%。研究结果可促进建筑节能和双碳目标的实现。展开更多
Phase change material(PCM)applied to roofs can weak external heat entering the room to reduce air-conditioning energy consumption.In this study,three forms of macro-encapsulated PCM roofs with different PCMs(RT27,RT31...Phase change material(PCM)applied to roofs can weak external heat entering the room to reduce air-conditioning energy consumption.In this study,three forms of macro-encapsulated PCM roofs with different PCMs(RT27,RT31,RT35HC,PT37)are proposed.The effects of PCM thickness,the encapsulation forms,and different PCMs on the thermal performance of the roof are discussed in Moroccan semi-arid and Mediterranean climates.The results show that as the PCM thickness increases,the peak temperature attenuation of the roof inner surface decreases.In two climates,the pure PCM layer among the three encapsulation forms(i.e.pure PCM layer,PCM in aluminum tubes,PCM in triangular aluminum)is the easiest to appear the phenomenon of insufficient heat storage and release,while the reduction of the peak inner surface temperature and time lag is the most satisfying.For the PCM in the aluminum tube,phase change time is the shortest and the latent heat utilization ratio is the highest,while thermal regulation performance is the least satisfying.The PCM in triangular aluminum can improve the latent heat utilization ratio significantly,and its thermal regulation performance is in the middle.In semi-arid climate,the time lag increases with phase change temperature increasing.The time lag could reach up to 6 h with 37℃phase transition temperature.In Mediterranean climate,the longest time lag with RT31 is 5 h,while the lowest peak inner surface temperature appears with RT27.The obtained conclusions could provide guidance for the application of PCM roofs in these two climates.展开更多
文摘Obviously, the outside annual climate change caused either by a major solar input during the hottest period or by a temperature drop during the coldest period leads to discomfort in inside buildings. This effect can be reduced by storing heat transmitted in phase change materials (PCM) as latent heat, in order to ensure a good situation of thermal comfort during all months of the year. In this work, thermal behavior of two roofing systems is studied. One roof is constituted only by usual materials in building. In the other, two phase change materials (PCM) are introduced according to three configurations. Study is interested to assess incorporation effect of two PCMs within the roof and to evaluate the optimum locations to reduce the energy consumption of air-conditioned room. Mono-dimensional numerical model validated analytically and experimentally, is used to carry out a parametric analyzes to determine characteristics of the layers in which the roofs are formed regardless of external climate effect. Numerical calculations are performed for three configurations of roof. Results show that insertion of phase change materials in roof provides best energy consumption saving regardless annual climate change. Generally, the three configurations lead to different results, depending on the combination of PCMs. This difference becomes less important when selection of PCMs take account the thermal comfort level and temperatures of hottest and coldest periods.
文摘为提高相变屋面的性能,本文提出了一种冷却塔-内嵌管式相变屋面复合降温系统。基于焓法,建立了系统的数值计算传热模型,数值研究了该系统在福州地区的热性能及节能潜力,探讨了相变材料相变温度、相变材料导热系数以及内嵌管间距的影响,并与传统的无内嵌管相变屋面进行了对比分析。研究发现,相变温度越高,复合降温系统的相变材料越容易完成凝固,但潜热利用率随相变温度的升高呈现先增加后降低的趋势。当相变温度由35℃升高到41℃时,屋面的累计冷负荷由383 k J/m^(2)增大到400 k J/m^(2),增加了4.4%。相变材料导热系数越高、内嵌管间距越小,复合降温系统相比于传统无内嵌管相变屋面的潜热利用优势越显著。当导热系数由0.2 W/(m·K)增加到0.8 W/(m·K)时,复合降温系统的潜热利用率和屋面累计冷负荷分别增加了36.3%和5.1%,而无内嵌管相变屋面的潜热利用率和屋面累计冷负荷分别升高了33.1%和6.3%。当内嵌管间距由500 mm减少到100 mm时,复合降温系统比传统无内嵌管相变屋面的潜热利用提高率由2.7%增大到16.3%,累计冷负荷降低率由3.8%升高到10.9%。研究结果可促进建筑节能和双碳目标的实现。
基金This study was supported by a grant from National Key R&D Program of China(No.2020YFE0200300)The authors gratefully acknowledge financial support from China Scholarship Council.
文摘Phase change material(PCM)applied to roofs can weak external heat entering the room to reduce air-conditioning energy consumption.In this study,three forms of macro-encapsulated PCM roofs with different PCMs(RT27,RT31,RT35HC,PT37)are proposed.The effects of PCM thickness,the encapsulation forms,and different PCMs on the thermal performance of the roof are discussed in Moroccan semi-arid and Mediterranean climates.The results show that as the PCM thickness increases,the peak temperature attenuation of the roof inner surface decreases.In two climates,the pure PCM layer among the three encapsulation forms(i.e.pure PCM layer,PCM in aluminum tubes,PCM in triangular aluminum)is the easiest to appear the phenomenon of insufficient heat storage and release,while the reduction of the peak inner surface temperature and time lag is the most satisfying.For the PCM in the aluminum tube,phase change time is the shortest and the latent heat utilization ratio is the highest,while thermal regulation performance is the least satisfying.The PCM in triangular aluminum can improve the latent heat utilization ratio significantly,and its thermal regulation performance is in the middle.In semi-arid climate,the time lag increases with phase change temperature increasing.The time lag could reach up to 6 h with 37℃phase transition temperature.In Mediterranean climate,the longest time lag with RT31 is 5 h,while the lowest peak inner surface temperature appears with RT27.The obtained conclusions could provide guidance for the application of PCM roofs in these two climates.