This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utiliz...This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utilization of channel resources,a decentralized event-triggered mechanism is adopted during the information transmission.By establishing the augmentation system and constructing the Lyapunov function,sufficient conditions are obtained for the system to be finite-time bounded and satisfy the H∞ performance index.Then,under these conditions,a suitable state estimator gain is obtained.Finally,the feasibility of the method is verified by a given illustrative example.展开更多
In recent years,the Internet of Things(IoT)has gradually developed applications such as collecting sensory data and building intelligent services,which has led to an explosion in mobile data traffic.Meanwhile,with the...In recent years,the Internet of Things(IoT)has gradually developed applications such as collecting sensory data and building intelligent services,which has led to an explosion in mobile data traffic.Meanwhile,with the rapid development of artificial intelligence,semantic communication has attracted great attention as a new communication paradigm.However,for IoT devices,however,processing image information efficiently in real time is an essential task for the rapid transmission of semantic information.With the increase of model parameters in deep learning methods,the model inference time in sensor devices continues to increase.In contrast,the Pulse Coupled Neural Network(PCNN)has fewer parameters,making it more suitable for processing real-time scene tasks such as image segmentation,which lays the foundation for real-time,effective,and accurate image transmission.However,the parameters of PCNN are determined by trial and error,which limits its application.To overcome this limitation,an Improved Pulse Coupled Neural Networks(IPCNN)model is proposed in this work.The IPCNN constructs the connection between the static properties of the input image and the dynamic properties of the neurons,and all its parameters are set adaptively,which avoids the inconvenience of manual setting in traditional methods and improves the adaptability of parameters to different types of images.Experimental segmentation results demonstrate the validity and efficiency of the proposed self-adaptive parameter setting method of IPCNN on the gray images and natural images from the Matlab and Berkeley Segmentation Datasets.The IPCNN method achieves a better segmentation result without training,providing a new solution for the real-time transmission of image semantic information.展开更多
In order to investigate the influence of hybrid coupling on the synchronization of delayed neural networks, by choosing an improved delay-dependent Lyapunov-Krasovskii functional, one less conservative asymptotical cr...In order to investigate the influence of hybrid coupling on the synchronization of delayed neural networks, by choosing an improved delay-dependent Lyapunov-Krasovskii functional, one less conservative asymptotical criterion based on linear matrix inequality (LMI) is established. The Kronecker product and convex combination techniques are employed. Also the bounds of time-varying delays and delay derivatives are fully considered. By adjusting the inner coupling matrix parameters and using the Matlab LMI toolbox, the design and applications of addressed coupled networks can be realized. Finally, the efficiency and applicability of the proposed results are illustrated by a numerical example with simulations.展开更多
Recently,numerous studies have demonstrated that the physics-informed neural network(PINN)can effectively and accurately resolve hyperelastic finite deformation problems.In this paper,a PINN framework for tackling hyp...Recently,numerous studies have demonstrated that the physics-informed neural network(PINN)can effectively and accurately resolve hyperelastic finite deformation problems.In this paper,a PINN framework for tackling hyperelastic-magnetic coupling problems is proposed.Since the solution space consists of two-phase domains,two separate networks are constructed to independently predict the solution for each phase region.In addition,a conscious point allocation strategy is incorporated to enhance the prediction precision of the PINN in regions characterized by sharp gradients.With the developed framework,the magnetic fields and deformation fields of magnetorheological elastomers(MREs)are solved under the control of hyperelastic-magnetic coupling equations.Illustrative examples are provided and contrasted with the reference results to validate the predictive accuracy of the proposed framework.Moreover,the advantages of the proposed framework in solving hyperelastic-magnetic coupling problems are validated,particularly in handling small data sets,as well as its ability in swiftly and precisely forecasting magnetostrictive motion.展开更多
In this article, we consider the global chaotic synchronization of general cou- pled neural networks, in which subsystems have both discrete and distributed delays. Stochastic perturbations between subsystems are also...In this article, we consider the global chaotic synchronization of general cou- pled neural networks, in which subsystems have both discrete and distributed delays. Stochastic perturbations between subsystems are also considered. On the basis of two sim- ple adaptive pinning feedback control schemes, Lyapunov functional method, and stochas- tic analysis approach, several sufficient conditions are developed to guarantee global syn- chronization of the coupled neural networks with two kinds of delay couplings, even if only partial states of the nodes are coupled. The outer-coupling matrices may be symmetric or asymmetric. Unlike existing results that an isolate node is introduced as the pinning target, we pin to help the network realizing synchronization without introducing any iso- late node when the network is not synchronized. As a by product, sufficient conditions under which the network realizes synchronization without control are derived. Numerical simulations confirm the effectiveness of the obtained results.展开更多
In this paper, a new approach using artificial neural network and genetic algorithm for the optimization of the thermally coupled distillation is presented. Mathematical model can be constructed with artificial neura...In this paper, a new approach using artificial neural network and genetic algorithm for the optimization of the thermally coupled distillation is presented. Mathematical model can be constructed with artificial neural network based on the simulation results with ASPEN PLUS. Modified genetic algorithm was used to optimize the model. With the proposed model and optimization arithmetic, mathematical model can be calculated, decision variables and target value can be reached automatically and quickly. A practical example is used to demonstrate the algorithm.展开更多
In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,r...In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,radiation pulse signals were pre-processed using a Fourier filter to reduce the original noise in the signals,whereas in the second group,the original noise was left untouched to simulate an extremely high-noise scenario.For each part,artificial Gaussian noise with different intensity levels was added to the signals prior to the discrimination process.In the aforementioned conditions,the performance of the PCNN was evaluated and compared with five other commonly used methods of n-γdiscrimination:(1)zero crossing,(2)charge comparison,(3)vector projection,(4)falling edge percentage slope,and(5)frequency gradient analysis.The experimental results showed that the PCNN method significantly outperforms other methods with outstanding FoM-value at all noise levels.Furthermore,the fluctuations in FoM-value of PCNN were significantly better than those obtained via other methods at most noise levels and only slightly worse than those obtained via the charge comparison and zerocrossing methods under extreme noise conditions.Additionally,the changing patterns and fluctuations of the FoMvalue were evaluated under different noise conditions.Hence,based on the results,the parameter selection strategy of the PCNN was presented.In conclusion,the PCNN method is suitable for use in high-noise application scenarios for n-γdiscrimination because of its stability and remarkable discrimination performance.It does not rely on strict parameter settings and can realize satisfactory performance over a wide parameter range.展开更多
This paper investigates the global synchronization in an array of linearly coupled neural networks with constant and delayed coupling. By a simple combination of adaptive control and linear feedback with the updated l...This paper investigates the global synchronization in an array of linearly coupled neural networks with constant and delayed coupling. By a simple combination of adaptive control and linear feedback with the updated laws, some sufficient conditions are derived for global synchronization of the coupled neural networks. The coupling configuration matrix is assumed to be asymmetric, which is more coincident with the realistic network. It is shown that the approaches developed here extend and improve the earlier works. Finally, numerical simulations are presented to demonstrate the effectiveness of the theoretical results.展开更多
To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)...To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)is proposed.In this multi-PCNN fusion scheme,the auxiliary PCNN which captures the characteristics of feature image extracting from the infrared image is used to modulate the main PCNN,whose input could be original infrared image.Meanwhile,to make the PCNN fusion effect consistent with the human vision system,Laplacian energy is adopted to obtain the value of adaptive linking strength in PCNN.After that,the original dual band infrared images are reconstructed by using a weight fusion rule with the fire mapping images generated by the main PCNNs to obtain the fused image.Compared to wavelet transforms,Laplacian pyramids and traditional multi-PCNNs,fusion images based on our method have more information,rich details and clear edges.展开更多
This paper proposes new delay-dependent synchronization criteria for coupled Hopfield neural networks with time-varying delays. By construction of a suitable Lyapunov Krasovskii's functional and use of Finsler's lem...This paper proposes new delay-dependent synchronization criteria for coupled Hopfield neural networks with time-varying delays. By construction of a suitable Lyapunov Krasovskii's functional and use of Finsler's lemma, novel synchronization criteria for the networks are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.展开更多
A tightly coupled GPS ( global positioning system )/SINS ( strap down inertial navigation system) based on a GMDH ( group method of data handling) neural network was presented to solve the problem of degraded ac...A tightly coupled GPS ( global positioning system )/SINS ( strap down inertial navigation system) based on a GMDH ( group method of data handling) neural network was presented to solve the problem of degraded accuracy for less than four visible GPS satellites with poor signal quality. Positions and velocities of the satellites were predicted by a GMDH neural network, and the pseudo ranges and pseudo range rates received by the GPS receiver were simulated to ensure the regular op eration of the GPS/SINS Kalman filter during outages. In the mathematical simulation a tightly cou pled navigation system with a proposed approach has better navigation accuracy during GPS outages, and the anti jamming ability is strengthened for the tightly coupled navigation system.展开更多
This paper is concerned with the exponential synchronization problem of coupled memristive neural networks. In contrast to general neural networks, memristive neural networks exhibit state-dependent switching behavior...This paper is concerned with the exponential synchronization problem of coupled memristive neural networks. In contrast to general neural networks, memristive neural networks exhibit state-dependent switching behaviors due to the physical properties of memristors. Under a mild topology condition, it is proved that a small fraction of controlled sub- systems can efficiently synchronize the coupled systems. The pinned subsystems are identified via a search algorithm. Moreover, the information exchange network needs not to be undirected or strongly connected. Finally, two numerical simulations are performed to verify the usefulness and effectiveness of our results.展开更多
A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distri...A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distributed timevarying delay. All the coupling terms are subjected to stochastic disturbances described in terms of Brownian motion, which reflects a more realistic dynamical behaviour of coupled systems in practice. Based on a simple adaptive feedback controller and stochastic stability theory, several sufficient criteria are presented to ensure the synchronization of linearly stochastically coupled complex networks with coupling mixed time-varying delays. Finally, numerical simulations illustrated by scale-free complex networks verify the effectiveness of the proposed controllers.展开更多
An irregular segmented region coding algorithm based on pulse coupled neural network(PCNN) is presented. PCNN has the property of pulse-coupled and changeable threshold, through which these adjacent pixels with approx...An irregular segmented region coding algorithm based on pulse coupled neural network(PCNN) is presented. PCNN has the property of pulse-coupled and changeable threshold, through which these adjacent pixels with approximate gray values can be activated simultaneously. One can draw a conclusion that PCNN has the advantage of realizing the regional segmentation, and the details of original image can be achieved by the parameter adjustment of segmented images, and at the same time, the trivial segmented regions can be avoided. For the better approximation of irregular segmented regions, the Gram-Schmidt method, by which a group of orthonormal basis functions is constructed from a group of linear independent initial base functions, is adopted. Because of the orthonormal reconstructing method, the quality of reconstructed image can be greatly improved and the progressive image transmission will also be possible.展开更多
The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activa...The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activation dynamics in neural networks, and the stability of computing in structural analysis and design were stated briefly. It was successfully applied to nonlinear neural network to evaluate the stability of underground stope structure in a gold mine. With the application of BP network, it is proven that the neuro-com- puting is a practical and advanced tool for solving large-scale underground rock engineering problems.展开更多
Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particul...Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particulate matter pollution.In this paper,the influences of the main parameters on the droplet size,effective atomization range and sound pressure level(SPL)of a twin-fluid nozzle(TFN)are investigated,and in order to improve the atomization performance,a multi-objective synergetic optimization algorithm is presented.A multi-physics coupled acousticmechanics model based on the discrete phase model(DPM),large eddy simulation(LES)model,and Ffowcs Williams-Hawkings(FW-H)model is established,and the numerical simulation results of the multi-physics coupled acoustic-mechanics method are verified via experimental comparison.Based on the analysis of the multi-physics coupled acoustic-mechanics numerical simulation results,the effects of the water flow on the characteristics of the atomization flow distribution were obtained.A multi-physics coupled acoustic-mechanics numerical simulation result was employed to establish an orthogonal test database,and a multi-objective synergetic optimization algorithm was adopted to optimize the key parameters of the TFN.The optimal parameters are as follows:A gas flow of 0.94 m^(3)/h,water flow of 0.0237 m^(3)/h,orifice diameter of the self-excited vibrating cavity(SVC)of 1.19 mm,SVC orifice depth of 0.53 mm,distance between SVC and the outlet of nozzle of 5.11 mm,and a nozzle outlet diameter of 3.15 mm.The droplet particle size in the atomization flow field was significantly reduced,the spray distance improved by 71.56%,and the SPL data at each corresponding measurement point decreased by an average of 38.96%.The conclusions of this study offer a references for future TFN research.展开更多
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv...A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.62303016)the Research and Development Project of Engineering Research Center of Biofilm Water Purification and Utilization Technology of the Ministry of Education of China(Grant No.BWPU2023ZY02)+1 种基金the University Synergy Innovation Program of Anhui Province,China(Grant No.GXXT-2023-020)the Key Project of Natural Science Research in Universities of Anhui Province,China(Grant No.2024AH050171).
文摘This article investigates the issue of finite-time state estimation in coupled neural networks under random mixed cyberattacks,in which the Markov process is used to model the mixed cyberattacks.To optimize the utilization of channel resources,a decentralized event-triggered mechanism is adopted during the information transmission.By establishing the augmentation system and constructing the Lyapunov function,sufficient conditions are obtained for the system to be finite-time bounded and satisfy the H∞ performance index.Then,under these conditions,a suitable state estimator gain is obtained.Finally,the feasibility of the method is verified by a given illustrative example.
基金supported in part by the National Key Research and Development Program of China(Grant No.2019YFA0706200).
文摘In recent years,the Internet of Things(IoT)has gradually developed applications such as collecting sensory data and building intelligent services,which has led to an explosion in mobile data traffic.Meanwhile,with the rapid development of artificial intelligence,semantic communication has attracted great attention as a new communication paradigm.However,for IoT devices,however,processing image information efficiently in real time is an essential task for the rapid transmission of semantic information.With the increase of model parameters in deep learning methods,the model inference time in sensor devices continues to increase.In contrast,the Pulse Coupled Neural Network(PCNN)has fewer parameters,making it more suitable for processing real-time scene tasks such as image segmentation,which lays the foundation for real-time,effective,and accurate image transmission.However,the parameters of PCNN are determined by trial and error,which limits its application.To overcome this limitation,an Improved Pulse Coupled Neural Networks(IPCNN)model is proposed in this work.The IPCNN constructs the connection between the static properties of the input image and the dynamic properties of the neurons,and all its parameters are set adaptively,which avoids the inconvenience of manual setting in traditional methods and improves the adaptability of parameters to different types of images.Experimental segmentation results demonstrate the validity and efficiency of the proposed self-adaptive parameter setting method of IPCNN on the gray images and natural images from the Matlab and Berkeley Segmentation Datasets.The IPCNN method achieves a better segmentation result without training,providing a new solution for the real-time transmission of image semantic information.
基金The National Natural Science Foundation of China (No.60764001, 60835001,60875035, 61004032)the Postdoctoral Key Research Fund of Southeast Universitythe Natural Science Foundation of Jiangsu Province(No.BK2008294)
文摘In order to investigate the influence of hybrid coupling on the synchronization of delayed neural networks, by choosing an improved delay-dependent Lyapunov-Krasovskii functional, one less conservative asymptotical criterion based on linear matrix inequality (LMI) is established. The Kronecker product and convex combination techniques are employed. Also the bounds of time-varying delays and delay derivatives are fully considered. By adjusting the inner coupling matrix parameters and using the Matlab LMI toolbox, the design and applications of addressed coupled networks can be realized. Finally, the efficiency and applicability of the proposed results are illustrated by a numerical example with simulations.
基金supported by the National Natural Science Foundation of China(Nos.12072105 and 11932006)。
文摘Recently,numerous studies have demonstrated that the physics-informed neural network(PINN)can effectively and accurately resolve hyperelastic finite deformation problems.In this paper,a PINN framework for tackling hyperelastic-magnetic coupling problems is proposed.Since the solution space consists of two-phase domains,two separate networks are constructed to independently predict the solution for each phase region.In addition,a conscious point allocation strategy is incorporated to enhance the prediction precision of the PINN in regions characterized by sharp gradients.With the developed framework,the magnetic fields and deformation fields of magnetorheological elastomers(MREs)are solved under the control of hyperelastic-magnetic coupling equations.Illustrative examples are provided and contrasted with the reference results to validate the predictive accuracy of the proposed framework.Moreover,the advantages of the proposed framework in solving hyperelastic-magnetic coupling problems are validated,particularly in handling small data sets,as well as its ability in swiftly and precisely forecasting magnetostrictive motion.
基金supported by the National Natural Science Foundation of China under Grant No. 60874088 and No. 11072059the Scientific Research Fund of Yunnan Province under Grant No. 2010ZC150the Scientific Research Fund of Yunnan Provincial Education Department under Grant No. 07Y10085
文摘In this article, we consider the global chaotic synchronization of general cou- pled neural networks, in which subsystems have both discrete and distributed delays. Stochastic perturbations between subsystems are also considered. On the basis of two sim- ple adaptive pinning feedback control schemes, Lyapunov functional method, and stochas- tic analysis approach, several sufficient conditions are developed to guarantee global syn- chronization of the coupled neural networks with two kinds of delay couplings, even if only partial states of the nodes are coupled. The outer-coupling matrices may be symmetric or asymmetric. Unlike existing results that an isolate node is introduced as the pinning target, we pin to help the network realizing synchronization without introducing any iso- late node when the network is not synchronized. As a by product, sufficient conditions under which the network realizes synchronization without control are derived. Numerical simulations confirm the effectiveness of the obtained results.
文摘In this paper, a new approach using artificial neural network and genetic algorithm for the optimization of the thermally coupled distillation is presented. Mathematical model can be constructed with artificial neural network based on the simulation results with ASPEN PLUS. Modified genetic algorithm was used to optimize the model. With the proposed model and optimization arithmetic, mathematical model can be calculated, decision variables and target value can be reached automatically and quickly. A practical example is used to demonstrate the algorithm.
基金supported by the National Natural Science Foundation of China(Nos.4210040255,U19A2086)the Sichuan Science and Technology Program(No.2021JDRC0108)。
文摘In this study,the anti-noise performance of a pulse-coupled neural network(PCNN)was investigated in the neutron and gamma-ray(n-γ)discrimination field.The experiments were conducted in two groups.In the first group,radiation pulse signals were pre-processed using a Fourier filter to reduce the original noise in the signals,whereas in the second group,the original noise was left untouched to simulate an extremely high-noise scenario.For each part,artificial Gaussian noise with different intensity levels was added to the signals prior to the discrimination process.In the aforementioned conditions,the performance of the PCNN was evaluated and compared with five other commonly used methods of n-γdiscrimination:(1)zero crossing,(2)charge comparison,(3)vector projection,(4)falling edge percentage slope,and(5)frequency gradient analysis.The experimental results showed that the PCNN method significantly outperforms other methods with outstanding FoM-value at all noise levels.Furthermore,the fluctuations in FoM-value of PCNN were significantly better than those obtained via other methods at most noise levels and only slightly worse than those obtained via the charge comparison and zerocrossing methods under extreme noise conditions.Additionally,the changing patterns and fluctuations of the FoMvalue were evaluated under different noise conditions.Hence,based on the results,the parameter selection strategy of the PCNN was presented.In conclusion,the PCNN method is suitable for use in high-noise application scenarios for n-γdiscrimination because of its stability and remarkable discrimination performance.It does not rely on strict parameter settings and can realize satisfactory performance over a wide parameter range.
基金Project supported by National Natural Science Foundation of China (Grant No 60674026)the Jiangsu Provincial Natural Science Foundation of China (Grant No BK2007016)Program for Innovative Research Team of Jiangnan University,China
文摘This paper investigates the global synchronization in an array of linearly coupled neural networks with constant and delayed coupling. By a simple combination of adaptive control and linear feedback with the updated laws, some sufficient conditions are derived for global synchronization of the coupled neural networks. The coupling configuration matrix is assumed to be asymmetric, which is more coincident with the realistic network. It is shown that the approaches developed here extend and improve the earlier works. Finally, numerical simulations are presented to demonstrate the effectiveness of the theoretical results.
基金Supported by the National Natural Science Foundation of China(60905012,60572058)
文摘To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)is proposed.In this multi-PCNN fusion scheme,the auxiliary PCNN which captures the characteristics of feature image extracting from the infrared image is used to modulate the main PCNN,whose input could be original infrared image.Meanwhile,to make the PCNN fusion effect consistent with the human vision system,Laplacian energy is adopted to obtain the value of adaptive linking strength in PCNN.After that,the original dual band infrared images are reconstructed by using a weight fusion rule with the fire mapping images generated by the main PCNNs to obtain the fused image.Compared to wavelet transforms,Laplacian pyramids and traditional multi-PCNNs,fusion images based on our method have more information,rich details and clear edges.
基金supported by the Basic Science Research Program Through the National Research Foundation of Korea(NRF) Funded by the Ministry of Education,Science and Technology(Grant Nos.2011-0001045 and 2011-0009273)
文摘This paper proposes new delay-dependent synchronization criteria for coupled Hopfield neural networks with time-varying delays. By construction of a suitable Lyapunov Krasovskii's functional and use of Finsler's lemma, novel synchronization criteria for the networks are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.
文摘A tightly coupled GPS ( global positioning system )/SINS ( strap down inertial navigation system) based on a GMDH ( group method of data handling) neural network was presented to solve the problem of degraded accuracy for less than four visible GPS satellites with poor signal quality. Positions and velocities of the satellites were predicted by a GMDH neural network, and the pseudo ranges and pseudo range rates received by the GPS receiver were simulated to ensure the regular op eration of the GPS/SINS Kalman filter during outages. In the mathematical simulation a tightly cou pled navigation system with a proposed approach has better navigation accuracy during GPS outages, and the anti jamming ability is strengthened for the tightly coupled navigation system.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61134012 and 11271146)
文摘This paper is concerned with the exponential synchronization problem of coupled memristive neural networks. In contrast to general neural networks, memristive neural networks exhibit state-dependent switching behaviors due to the physical properties of memristors. Under a mild topology condition, it is proved that a small fraction of controlled sub- systems can efficiently synchronize the coupled systems. The pinned subsystems are identified via a search algorithm. Moreover, the information exchange network needs not to be undirected or strongly connected. Finally, two numerical simulations are performed to verify the usefulness and effectiveness of our results.
基金Project supported by the National Natural Science Foundation of China (Grant No 60874113)
文摘A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distributed timevarying delay. All the coupling terms are subjected to stochastic disturbances described in terms of Brownian motion, which reflects a more realistic dynamical behaviour of coupled systems in practice. Based on a simple adaptive feedback controller and stochastic stability theory, several sufficient criteria are presented to ensure the synchronization of linearly stochastically coupled complex networks with coupling mixed time-varying delays. Finally, numerical simulations illustrated by scale-free complex networks verify the effectiveness of the proposed controllers.
基金National Natural Science Foundation of China(60572011) 985 Special Study Project(LZ85 -231 -582627)
文摘An irregular segmented region coding algorithm based on pulse coupled neural network(PCNN) is presented. PCNN has the property of pulse-coupled and changeable threshold, through which these adjacent pixels with approximate gray values can be activated simultaneously. One can draw a conclusion that PCNN has the advantage of realizing the regional segmentation, and the details of original image can be achieved by the parameter adjustment of segmented images, and at the same time, the trivial segmented regions can be avoided. For the better approximation of irregular segmented regions, the Gram-Schmidt method, by which a group of orthonormal basis functions is constructed from a group of linear independent initial base functions, is adopted. Because of the orthonormal reconstructing method, the quality of reconstructed image can be greatly improved and the progressive image transmission will also be possible.
基金This work was financially supported by the Key Project for National Science of "9.5" (Reward Ⅱ for National Science and Technol
文摘The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activation dynamics in neural networks, and the stability of computing in structural analysis and design were stated briefly. It was successfully applied to nonlinear neural network to evaluate the stability of underground stope structure in a gold mine. With the application of BP network, it is proven that the neuro-com- puting is a practical and advanced tool for solving large-scale underground rock engineering problems.
基金Supported by National Natural Science Foundation of China (Grant No.U21A20122)Zhejiang Provincial Natural Science Foundation of China (Grant No.LY22E050012)+2 种基金China Postdoctoral Science Foundation (Grant Nos.2023T160580,2023M743102)Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems of China (Grant No.GZKF-202225)Students in Zhejiang Province Science and Technology Innovation Plan of China (Grant No.2023R403073)。
文摘Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particulate matter pollution.In this paper,the influences of the main parameters on the droplet size,effective atomization range and sound pressure level(SPL)of a twin-fluid nozzle(TFN)are investigated,and in order to improve the atomization performance,a multi-objective synergetic optimization algorithm is presented.A multi-physics coupled acousticmechanics model based on the discrete phase model(DPM),large eddy simulation(LES)model,and Ffowcs Williams-Hawkings(FW-H)model is established,and the numerical simulation results of the multi-physics coupled acoustic-mechanics method are verified via experimental comparison.Based on the analysis of the multi-physics coupled acoustic-mechanics numerical simulation results,the effects of the water flow on the characteristics of the atomization flow distribution were obtained.A multi-physics coupled acoustic-mechanics numerical simulation result was employed to establish an orthogonal test database,and a multi-objective synergetic optimization algorithm was adopted to optimize the key parameters of the TFN.The optimal parameters are as follows:A gas flow of 0.94 m^(3)/h,water flow of 0.0237 m^(3)/h,orifice diameter of the self-excited vibrating cavity(SVC)of 1.19 mm,SVC orifice depth of 0.53 mm,distance between SVC and the outlet of nozzle of 5.11 mm,and a nozzle outlet diameter of 3.15 mm.The droplet particle size in the atomization flow field was significantly reduced,the spray distance improved by 71.56%,and the SPL data at each corresponding measurement point decreased by an average of 38.96%.The conclusions of this study offer a references for future TFN research.
基金supported by the Fundamental Research Funds for the Central Universities (No.3122020072)the Multi-investment Project of Tianjin Applied Basic Research(No.23JCQNJC00250)。
文摘A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.