In the present study, comprehensive stress testing of tenatoprazole was carried out according to ICH guide-line Q1A (R2). Tenatoprazole was subjected to stress conditions of hydrolysis, oxidation, photolysis and neutr...In the present study, comprehensive stress testing of tenatoprazole was carried out according to ICH guide-line Q1A (R2). Tenatoprazole was subjected to stress conditions of hydrolysis, oxidation, photolysis and neutral decomposition. Extensive degradation was found to occur in acidic, neutral and oxidative conditions. Mild degradation was observed in basic conditions. The drug is relatively stable in the solid-state. Successful separation of drug from degradation products formed under stress conditions was achieved on a Kromasil C18 column (250 mm × 4.6 mm, 5.0 μ particle size) using methanol: THF: acetate buffer (68:12:20 v/v) pH adjusted to 6.0 with acetic acid as mobile phase, flow rate was 1.0 mL●min–1 and column was maintained at 45°C. Quantification and linearity was achieved at 307 nm over the concentration range of 0.5 - 160 μg●mL–1 for tenatoprazole. The method was validated for specificity, linearity, accuracy, precision, LOD, LOQ and robustness.展开更多
Drug stability is closely related to drug safety and needs to be considered in the process of drug production,package and storage.To investigate the stability of epalrestat,a carboxylic acid derivative,a reversed-phas...Drug stability is closely related to drug safety and needs to be considered in the process of drug production,package and storage.To investigate the stability of epalrestat,a carboxylic acid derivative,a reversed-phase high-performance liquid chromatography(RP-HPLC)method was developed in this study and applied to analyzing the degradation kinetics of epalrestat in aqueous solutions in various conditions,such as different pH,temperatures,ionic strengths,oxidation and irradiation.The calibration curve was A=1.6×10^5C–1.3×10^3(r=0.999)with the liner range of 0.5–24μg/mL,the intra-day and inter-day precision was less than 2.0%,as was the repeatibility.The average accuracy for different concentrations was more than 98.5%,indicating that perfect recoveries were achieved.Degradation kinetic parameters such as degradation rate constants(k),activation energy(Ea)and shelf life(t0.9)under different conditions were calculated and discussed.The results indicated that the degradation behavior of epalrestat was pH-dependent and the stability of epalrestat decreased with the rised irradiation and ionic strength;however,it was more stable in neutral and alkaline conditions as well as lower temperatures.The results showed that the degradation kinetics of epalrestat followed first-order reaction kinetics.Furthermore,the degradation products of epalrestat under stress conditions were identified by UHPLC-PDA-MS/MS,with seven degradation products being detected and four of them being tentatively identified.展开更多
文摘In the present study, comprehensive stress testing of tenatoprazole was carried out according to ICH guide-line Q1A (R2). Tenatoprazole was subjected to stress conditions of hydrolysis, oxidation, photolysis and neutral decomposition. Extensive degradation was found to occur in acidic, neutral and oxidative conditions. Mild degradation was observed in basic conditions. The drug is relatively stable in the solid-state. Successful separation of drug from degradation products formed under stress conditions was achieved on a Kromasil C18 column (250 mm × 4.6 mm, 5.0 μ particle size) using methanol: THF: acetate buffer (68:12:20 v/v) pH adjusted to 6.0 with acetic acid as mobile phase, flow rate was 1.0 mL●min–1 and column was maintained at 45°C. Quantification and linearity was achieved at 307 nm over the concentration range of 0.5 - 160 μg●mL–1 for tenatoprazole. The method was validated for specificity, linearity, accuracy, precision, LOD, LOQ and robustness.
文摘Drug stability is closely related to drug safety and needs to be considered in the process of drug production,package and storage.To investigate the stability of epalrestat,a carboxylic acid derivative,a reversed-phase high-performance liquid chromatography(RP-HPLC)method was developed in this study and applied to analyzing the degradation kinetics of epalrestat in aqueous solutions in various conditions,such as different pH,temperatures,ionic strengths,oxidation and irradiation.The calibration curve was A=1.6×10^5C–1.3×10^3(r=0.999)with the liner range of 0.5–24μg/mL,the intra-day and inter-day precision was less than 2.0%,as was the repeatibility.The average accuracy for different concentrations was more than 98.5%,indicating that perfect recoveries were achieved.Degradation kinetic parameters such as degradation rate constants(k),activation energy(Ea)and shelf life(t0.9)under different conditions were calculated and discussed.The results indicated that the degradation behavior of epalrestat was pH-dependent and the stability of epalrestat decreased with the rised irradiation and ionic strength;however,it was more stable in neutral and alkaline conditions as well as lower temperatures.The results showed that the degradation kinetics of epalrestat followed first-order reaction kinetics.Furthermore,the degradation products of epalrestat under stress conditions were identified by UHPLC-PDA-MS/MS,with seven degradation products being detected and four of them being tentatively identified.