A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach throu...A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach through the standard forms of the PDE module in COMSOL.Two typical mechanics problems are exemplified:The deflection of a thin plate,which can be addressed with the dedicated finite element module,and the stress of a pure bending beamthat cannot be tackled.The procedure for the two problems regarding the three standard forms required by the PDE module is detailed.The results were in good agreement with the literature,indicating that the PDE module provides a promising means to solve complex PDEs,especially for those a dedicated finite element module has yet to be developed.展开更多
This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering a...This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering and science.An approximate solution of the system is sought in the formof the finite series over the Müntz polynomials.By using the collocation procedure in the time interval,one gets the linear algebraic system for the coefficient of the expansion which can be easily solved numerically by a standard procedure.This technique also serves as the basis for solving the time-fractional partial differential equations(PDEs).The modified radial basis functions are used for spatial approximation of the solution.The collocation in the solution domain transforms the equation into a system of fractional ordinary differential equations similar to the one mentioned above.Several examples have verified the performance of the proposed novel technique with high accuracy and efficiency.展开更多
The deferred correction(DeC)is an iterative procedure,characterized by increasing the accuracy at each iteration,which can be used to design numerical methods for systems of ODEs.The main advantage of such framework i...The deferred correction(DeC)is an iterative procedure,characterized by increasing the accuracy at each iteration,which can be used to design numerical methods for systems of ODEs.The main advantage of such framework is the automatic way of getting arbitrarily high order methods,which can be put in the Runge-Kutta(RK)form.The drawback is the larger computational cost with respect to the most used RK methods.To reduce such cost,in an explicit setting,we propose an efcient modifcation:we introduce interpolation processes between the DeC iterations,decreasing the computational cost associated to the low order ones.We provide the Butcher tableaux of the new modifed methods and we study their stability,showing that in some cases the computational advantage does not afect the stability.The fexibility of the novel modifcation allows nontrivial applications to PDEs and construction of adaptive methods.The good performances of the introduced methods are broadly tested on several benchmarks both in ODE and PDE contexts.展开更多
PDE是Plug—in Development Environment的英文缩写,即插件开发环境。它是Eclipse项目的三个子项目之一。PDE提供了大量的查看器和编辑器,以便更易于创建Eclipse插件。PDE使插件的集成变得容易而有趣。通过PDE,可以创建插件验证文件p...PDE是Plug—in Development Environment的英文缩写,即插件开发环境。它是Eclipse项目的三个子项目之一。PDE提供了大量的查看器和编辑器,以便更易于创建Eclipse插件。PDE使插件的集成变得容易而有趣。通过PDE,可以创建插件验证文件plugin.xml,对运行期插件和其它需要的插件进行说明,定义扩展点,将XML语法文件与扩展点标记联系起来以便于验证,并在其它插件的扩展点上创建扩展件(Extensions)。展开更多
In this paper,the three-variable shifted Jacobi operational matrix of fractional derivatives is used together with the collocation method for numerical solution of threedimensional multi-term fractional-order PDEs wit...In this paper,the three-variable shifted Jacobi operational matrix of fractional derivatives is used together with the collocation method for numerical solution of threedimensional multi-term fractional-order PDEs with variable coefficients.The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations which greatly simplifying the problem.The approximate solutions of nonlinear fractional PDEs with variable coefficients thus obtained by threevariable shifted Jacobi polynomials are compared with the exact solutions.Furthermore some theorems and lemmas are introduced to verify the convergence results of our algorithm.Lastly,several numerical examples are presented to test the superiority and efficiency of the proposed method.展开更多
基金supported by the National Natural Science Foundations of China(Grant Nos.12372073 and U20B2013)the Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-QN-0030).
文摘A numerical approach is an effective means of solving boundary value problems(BVPs).This study focuses on physical problems with general partial differential equations(PDEs).It investigates the solution approach through the standard forms of the PDE module in COMSOL.Two typical mechanics problems are exemplified:The deflection of a thin plate,which can be addressed with the dedicated finite element module,and the stress of a pure bending beamthat cannot be tackled.The procedure for the two problems regarding the three standard forms required by the PDE module is detailed.The results were in good agreement with the literature,indicating that the PDE module provides a promising means to solve complex PDEs,especially for those a dedicated finite element module has yet to be developed.
基金funded by the National Key Research and Development Program of China(No.2021YFB2600704)the National Natural Science Foundation of China(No.52171272)the Significant Science and Technology Project of the Ministry of Water Resources of China(No.SKS-2022112).
文摘This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering and science.An approximate solution of the system is sought in the formof the finite series over the Müntz polynomials.By using the collocation procedure in the time interval,one gets the linear algebraic system for the coefficient of the expansion which can be easily solved numerically by a standard procedure.This technique also serves as the basis for solving the time-fractional partial differential equations(PDEs).The modified radial basis functions are used for spatial approximation of the solution.The collocation in the solution domain transforms the equation into a system of fractional ordinary differential equations similar to the one mentioned above.Several examples have verified the performance of the proposed novel technique with high accuracy and efficiency.
文摘The deferred correction(DeC)is an iterative procedure,characterized by increasing the accuracy at each iteration,which can be used to design numerical methods for systems of ODEs.The main advantage of such framework is the automatic way of getting arbitrarily high order methods,which can be put in the Runge-Kutta(RK)form.The drawback is the larger computational cost with respect to the most used RK methods.To reduce such cost,in an explicit setting,we propose an efcient modifcation:we introduce interpolation processes between the DeC iterations,decreasing the computational cost associated to the low order ones.We provide the Butcher tableaux of the new modifed methods and we study their stability,showing that in some cases the computational advantage does not afect the stability.The fexibility of the novel modifcation allows nontrivial applications to PDEs and construction of adaptive methods.The good performances of the introduced methods are broadly tested on several benchmarks both in ODE and PDE contexts.
文摘PDE是Plug—in Development Environment的英文缩写,即插件开发环境。它是Eclipse项目的三个子项目之一。PDE提供了大量的查看器和编辑器,以便更易于创建Eclipse插件。PDE使插件的集成变得容易而有趣。通过PDE,可以创建插件验证文件plugin.xml,对运行期插件和其它需要的插件进行说明,定义扩展点,将XML语法文件与扩展点标记联系起来以便于验证,并在其它插件的扩展点上创建扩展件(Extensions)。
基金This work was supported by the Collaborative Innovation Center of Taiyuan Heavy Machinery Equipment,Postdoctoral Startup Fund of Taiyuan University of Science and Technology(20152034)the Natural Science Foundation of Shanxi Province(201701D221135)National College Students Innovation and Entrepreneurship Project(201710109003)and(201610109007).
文摘In this paper,the three-variable shifted Jacobi operational matrix of fractional derivatives is used together with the collocation method for numerical solution of threedimensional multi-term fractional-order PDEs with variable coefficients.The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations which greatly simplifying the problem.The approximate solutions of nonlinear fractional PDEs with variable coefficients thus obtained by threevariable shifted Jacobi polynomials are compared with the exact solutions.Furthermore some theorems and lemmas are introduced to verify the convergence results of our algorithm.Lastly,several numerical examples are presented to test the superiority and efficiency of the proposed method.