期刊文献+
共找到2,727篇文章
< 1 2 137 >
每页显示 20 50 100
Meta-Auto-Decoder:a Meta-Learning-Based Reduced Order Model for Solving Parametric Partial Differential Equations
1
作者 Zhanhong Ye Xiang Huang +1 位作者 Hongsheng Liu Bin Dong 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1096-1130,共35页
Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational... Many important problems in science and engineering require solving the so-called parametric partial differential equations(PDEs),i.e.,PDEs with different physical parameters,boundary conditions,shapes of computational domains,etc.Typical reduced order modeling techniques accelerate the solution of the parametric PDEs by projecting them onto a linear trial manifold constructed in the ofline stage.These methods often need a predefined mesh as well as a series of precomputed solution snapshots,and may struggle to balance between the efficiency and accuracy due to the limitation of the linear ansatz.Utilizing the nonlinear representation of neural networks(NNs),we propose the Meta-Auto-Decoder(MAD)to construct a nonlinear trial manifold,whose best possible performance is measured theoretically by the decoder width.Based on the meta-learning concept,the trial manifold can be learned in a mesh-free and unsupervised way during the pre-training stage.Fast adaptation to new(possibly heterogeneous)PDE parameters is enabled by searching on this trial manifold,and optionally fine-tuning the trial manifold at the same time.Extensive numerical experiments show that the MAD method exhibits a faster convergence speed without losing the accuracy than other deep learning-based methods. 展开更多
关键词 Parametric partial differential equations(pdes) META-LEARNING Reduced order modeling Neural networks(NNs) Auto-decoder
下载PDF
Results Involving Partial Differential Equations and Their Solution by Certain Integral Transform
2
作者 Rania Saadah Mohammed Amleh +2 位作者 Ahmad Qazza Shrideh Al-Omari Ahmet Ocak Akdemir 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1593-1616,共24页
In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, exi... In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, existence, scaling andshifting, etc. Then,we derive several results enfolding partial derivatives and establish amulti-convolution theorem.Further, we apply the aforementioned transform to some classical functions and many types of partial differentialequations involving heat equations,wave equations, Laplace equations, and Poisson equations aswell.Moreover,wedraw some figures to illustrate 3-D contour plots for exact solutions of some selected examples involving differentvalues in their variables. 展开更多
关键词 ARA transform double ARA transform triple ARA transform partial differential equations integral transform
下载PDF
Machine learning of partial differential equations from noise data
3
作者 Wenbo Cao Weiwei Zhang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第6期441-446,共6页
Machine learning of partial differential equations(PDEs)from data is a potential breakthrough for addressing the lack of physical equations in complex dynamic systems.Recently,sparse regression has emerged as an attra... Machine learning of partial differential equations(PDEs)from data is a potential breakthrough for addressing the lack of physical equations in complex dynamic systems.Recently,sparse regression has emerged as an attractive approach.However,noise presents the biggest challenge in sparse regression for identifying equations,as it relies on local derivative evaluations of noisy data.This study proposes a simple and general approach that significantly improves noise robustness by projecting the evaluated time derivative and partial differential term into a subspace with less noise.This method enables accurate reconstruction of PDEs involving high-order derivatives,even from data with considerable noise.Additionally,we discuss and compare the effects of the proposed method based on Fourier subspace and POD(proper orthogonal decomposition)subspace.Generally,the latter yields better results since it preserves the maximum amount of information. 展开更多
关键词 partial differential equation Machine learning Sparse regression Noise data
下载PDF
LaNets:Hybrid Lagrange Neural Networks for Solving Partial Differential Equations
4
作者 Ying Li Longxiang Xu +1 位作者 Fangjun Mei Shihui Ying 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期657-672,共16页
We propose new hybrid Lagrange neural networks called LaNets to predict the numerical solutions of partial differential equations.That is,we embed Lagrange interpolation and small sample learning into deep neural netw... We propose new hybrid Lagrange neural networks called LaNets to predict the numerical solutions of partial differential equations.That is,we embed Lagrange interpolation and small sample learning into deep neural network frameworks.Concretely,we first perform Lagrange interpolation in front of the deep feedforward neural network.The Lagrange basis function has a neat structure and a strong expression ability,which is suitable to be a preprocessing tool for pre-fitting and feature extraction.Second,we introduce small sample learning into training,which is beneficial to guide themodel to be corrected quickly.Taking advantages of the theoretical support of traditional numerical method and the efficient allocation of modern machine learning,LaNets achieve higher predictive accuracy compared to the state-of-the-artwork.The stability and accuracy of the proposed algorithmare demonstrated through a series of classical numerical examples,including one-dimensional Burgers equation,onedimensional carburizing diffusion equations,two-dimensional Helmholtz equation and two-dimensional Burgers equation.Experimental results validate the robustness,effectiveness and flexibility of the proposed algorithm. 展开更多
关键词 Hybrid Lagrange neural networks interpolation polynomials deep learning numerical simulation partial differential equations
下载PDF
The Fractional Investigation of Some Nonlinear Partial Differential Equations by Using an Efficient Procedure
5
作者 Fairouz Tchier Hassan Khan +2 位作者 Shahbaz Khan Poom Kumam Ioannis Dassios 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2137-2153,共17页
The nonlinearity inmany problems occurs because of the complexity of the given physical phenomena.The present paper investigates the non-linear fractional partial differential equations’solutions using the Caputo ope... The nonlinearity inmany problems occurs because of the complexity of the given physical phenomena.The present paper investigates the non-linear fractional partial differential equations’solutions using the Caputo operator with Laplace residual power seriesmethod.It is found that the present technique has a direct and simple implementation to solve the targeted problems.The comparison of the obtained solutions has been done with actual solutions to the problems.The fractional-order solutions are presented and considered to be the focal point of this research article.The results of the proposed technique are highly accurate and provide useful information about the actual dynamics of each problem.Because of the simple implementation,the present technique can be extended to solve other important fractional order problems. 展开更多
关键词 Fractional calculus laplace transform laplace residual power series method fractional partial differential equation power series fractional power series
下载PDF
On Fuzzy Conformable Double Laplace Transform with Applications to Partial Differential Equations
6
作者 Thabet Abdeljawad Awais Younus +1 位作者 Manar A.Alqudah Usama Atta 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期2163-2191,共29页
The Laplace transformation is a very important integral transform,and it is extensively used in solving ordinary differential equations,partial differential equations,and several types of integro-differential equation... The Laplace transformation is a very important integral transform,and it is extensively used in solving ordinary differential equations,partial differential equations,and several types of integro-differential equations.Our purpose in this study is to introduce the notion of fuzzy double Laplace transform,fuzzy conformable double Laplace transform(FCDLT).We discuss some basic properties of FCDLT.We obtain the solutions of fuzzy partial differential equations(both one-dimensional and two-dimensional cases)through the double Laplace approach.We demonstrate through numerical examples that our proposed method is very successful and convenient for resolving partial differential equations. 展开更多
关键词 Fuzzy conformable laplace transform fuzzy double laplace transform fuzzy conformable double laplace transform fuzzy conformable partial differential equation
下载PDF
Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics 被引量:1
7
作者 杜明婧 孙宝军 凯歌 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期53-57,共5页
This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)metho... This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)method which deals with this problem is very troublesome.This paper proposes a new method by adaptive multi-step piecewise interpolation reproducing kernel(AMPIRK)method for the first time.This method has three obvious advantages which are as follows.Firstly,the piecewise number is reduced.Secondly,the calculation accuracy is improved.Finally,the waste time caused by too many fragments is avoided.Then four numerical examples show that this new method has a higher precision and it is a more timesaving numerical method than the others.The research in this paper provides a powerful mathematical tool for solving time-fractional option pricing model which will play an important role in financial economics. 展开更多
关键词 time-fractional partial differential equation adaptive multi-step reproducing kernel method method numerical solution
下载PDF
Numerical Solution of Parabolic in Partial Differential Equations (PDEs) in One and Two Space Variable
8
作者 Mariam Almahdi Mohammed Mu’lla Amal Mohammed Ahmed Gaweash Hayat Yousuf Ismail Bakur 《Journal of Applied Mathematics and Physics》 2022年第2期311-321,共11页
In this paper, we shall be concerned with the numerical solution of parabolic equations in one space variable and the time variable t. We expand Taylor series to derive a higher-order approximation for U<sub>t&l... In this paper, we shall be concerned with the numerical solution of parabolic equations in one space variable and the time variable t. We expand Taylor series to derive a higher-order approximation for U<sub>t</sub>. We begin with the simplest model problem, for heat conduction in a uniform medium. For this model problem, an explicit difference method is very straightforward in use, and the analysis of its error is easily accomplished by the use of a maximum principle. As we shall show, however, the numerical solution becomes unstable unless the time step is severely restricted, so we shall go on to consider other, more elaborate, numerical methods which can avoid such a restriction. The additional complication in the numerical calculation is more than offset by the smaller number of time steps needed. We then extend the methods to problems with more general boundary conditions, then to more general linear parabolic equations. Finally, we shall discuss the more difficult problem of the solution of nonlinear equations. 展开更多
关键词 partial differential equations (pdes) Homentropic Spatial Derivatives with Finite Differences Central Differences Finite Differences
下载PDF
An Extension of Mapping Deformation Method and New Exact Solution for Three Coupled Nonlinear Partial Differential Equations 被引量:11
9
作者 LIHua-Mei 《Communications in Theoretical Physics》 SCIE CAS CSCD 2003年第4期395-400,共6页
In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equat... In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained. 展开更多
关键词 coupled nonlinear partial differential equations cubic nonlinear Klein-Gordon equation exact solution
下载PDF
Oscillation for Solutions of Systems of High Order Partial Differential Equations of Neutral Type 被引量:8
10
作者 LIN Wen-xian(Department of Mathematics, Hanshan Teacher’s College, Chaozhou 521041, China) 《Chinese Quarterly Journal of Mathematics》 CSCD 2003年第2期168-174,共7页
In this paper, sane sufficient conditions are obtained for the oscillation for solutions of systems of high order partial differential equations of neutral type.
关键词 neutral type system of partial differential equations OSCILLATION
下载PDF
Oscillation of Nonlinear Impulsive Delay Hyperbolic Partial Differential Equations 被引量:2
11
作者 罗李平 彭白玉 欧阳自根 《Chinese Quarterly Journal of Mathematics》 CSCD 2009年第3期439-444,共6页
In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differen... In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained. 展开更多
关键词 NONLINEAR IMPULSE DELAY hyperbolic partial differential equations OSCILLATION
下载PDF
Method of Lines for Third Order Partial Differential Equations 被引量:2
12
作者 Mustafa Kudu Ilhame Amirali 《Journal of Applied Mathematics and Physics》 2014年第2期33-36,共4页
The method of lines is applied to the boundary-value problem for third order partial differential equation. Explicit expression and order of convergence for the approximate solution are obtained.
关键词 Method of LINES partial differential equation CONVERGENCE Error ESTIMATES
下载PDF
A lattice Boltzmann model with an amending function for simulating nonlinear partial differential equations 被引量:1
13
作者 陈林婕 马昌凤 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第1期148-155,共8页
This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut +αuux +βu^nuz +γuxx +δuzxx +ζxxxx = 0. This model... This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut +αuux +βu^nuz +γuxx +δuzxx +ζxxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman-Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions. 展开更多
关键词 nonlinear partial differential equation lattice Boltzmann method Chapman-Enskog expansion Taylor expansion
下载PDF
DISTRIBUTED PARAMETER NEURAL NETWORKS FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS 被引量:1
14
作者 Feng Dazheng Bao Zheng Jiao Licheng(Electronic Engineering Institute, Xidian University, Xi’an 710071) 《Journal of Electronics(China)》 1997年第2期186-190,共5页
Novel distributed parameter neural networks are proposed for solving partial differential equations, and their dynamic performances are studied in Hilbert space. The locally connected neural networks are obtained by s... Novel distributed parameter neural networks are proposed for solving partial differential equations, and their dynamic performances are studied in Hilbert space. The locally connected neural networks are obtained by separating distributed parameter neural networks. Two simulations are also given. Both theoretical and computed results illustrate that the distributed parameter neural networks are effective and efficient for solving partial differential equation problems. 展开更多
关键词 Distributed PARAMETER NEURAL network partial differential equation Stability Local CONNECTION
下载PDF
Finite-time consensus of multi-agent systems driven by hyperbolic partial differential equations via boundary control 被引量:1
15
作者 Xuhui WANG Nanjing HUANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第12期1799-1816,共18页
The leaderless and leader-following finite-time consensus problems for multiagent systems(MASs)described by first-order linear hyperbolic partial differential equations(PDEs)are studied.The Lyapunov theorem and the un... The leaderless and leader-following finite-time consensus problems for multiagent systems(MASs)described by first-order linear hyperbolic partial differential equations(PDEs)are studied.The Lyapunov theorem and the unique solvability result for the first-order linear hyperbolic PDE are used to obtain some sufficient conditions for ensuring the finite-time consensus of the leaderless and leader-following MASs driven by first-order linear hyperbolic PDEs.Finally,two numerical examples are provided to verify the effectiveness of the proposed methods. 展开更多
关键词 finite-time consensus hyperbolic partial differential equation(pde) leaderless multi-agent system(MAS) leader-following MAS boundary control
下载PDF
Symbolic computation and exact traveling solutions for nonlinear partial differential equations 被引量:1
16
作者 吴国成 夏铁成 《Journal of Shanghai University(English Edition)》 CAS 2008年第6期481-485,共5页
In this paper, with the aid of the symbolic computation, a further extended tanh function method was presented. Based on the new general ansatz, many nonlinear partial differential equation(s)(NPDE(s)) can he so... In this paper, with the aid of the symbolic computation, a further extended tanh function method was presented. Based on the new general ansatz, many nonlinear partial differential equation(s)(NPDE(s)) can he solved. Especially, as applications, a compound KdV-mKdV equation and the Broer-Kaup equations are considered successfully, and many solutions including periodic solutions, triangle solutions, and rational solutions are obtained. The method can also be applied to other NPDEs. 展开更多
关键词 nonlinear partial differential equations (Npdes) rational solution soliton solution doubly periodic solution Wu method
下载PDF
New Implementation of Legendre Polynomials for Solving Partial Differential Equations 被引量:1
17
作者 Ali Davari Abozar Ahmadi 《Applied Mathematics》 2013年第12期1647-1650,共4页
In this paper we present a proposal using Legendre polynomials approximation for the solution of the second order linear partial differential equations. Our approach consists of reducing the problem to a set of linear... In this paper we present a proposal using Legendre polynomials approximation for the solution of the second order linear partial differential equations. Our approach consists of reducing the problem to a set of linear equations by expanding the approximate solution in terms of shifted Legendre polynomials with unknown coefficients. The performance of presented method has been compared with other methods, namely Sinc-Galerkin, quadratic spline collocation and LiuLin method. Numerical examples show better accuracy of the proposed method. Moreover, the computation cost decreases at least by a factor of 6 in this method. 展开更多
关键词 LEGENDRE POLYNOMIALS partial differential equations COLLOCATION Method
下载PDF
On Current Developments in Partial Differential Equations 被引量:1
18
作者 Fanghua Lin 《Communications in Mathematical Research》 CSCD 2020年第1期1-30,共30页
The first part of this article is an overview on some recent major developments in the field of analysis and partial different equations.It is a brief presentation given by the author at a round table discussion.The s... The first part of this article is an overview on some recent major developments in the field of analysis and partial different equations.It is a brief presentation given by the author at a round table discussion.The second part is a supplement of various details provided by several outstanding researchers on subjects. 展开更多
关键词 partial differential equations HARMONIC analysis GEOMETRIC MEASURE theory
下载PDF
Mixture of a New Integral Transform and Homotopy Perturbation Method for Solving Nonlinear Partial Differential Equations 被引量:1
19
作者 Artion Kashuri Akli Fundo Matilda Kreku 《Advances in Pure Mathematics》 2013年第3期317-323,共7页
In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomi... In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomials [1]. The analytical results of examples are calculated in terms of convergent series with easily computed components [2]. 展开更多
关键词 HOMOTOPY PERTURBATION Methods A NEW INTEGRAL Transform Nonlinear partial differential equations He’s POLYNOMIALS
下载PDF
An Introduction to Numerical Methods for the Solutions of Partial Differential Equations 被引量:1
20
作者 Manoj Kumar Garima Mishra 《Applied Mathematics》 2011年第11期1327-1338,共12页
Partial differential equations arise in formulations of problems involving functions of several variables such as the propagation of sound or heat, electrostatics, electrodynamics, fluid flow, and elasticity, etc. The... Partial differential equations arise in formulations of problems involving functions of several variables such as the propagation of sound or heat, electrostatics, electrodynamics, fluid flow, and elasticity, etc. The present paper deals with a general introduction and classification of partial differential equations and the numerical methods available in the literature for the solution of partial differential equations. 展开更多
关键词 partial differential equations EIGENVALUE FINITE Difference METHOD FINITE Volume METHOD FINITE Element METHOD
下载PDF
上一页 1 2 137 下一页 到第
使用帮助 返回顶部