期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microfluidic sequential injection analysis system based on polydimethylsiloxane (PDMS) chip with integrated pneumatic-actuated valves 被引量:1
1
作者 FAN JiFeng ZHU Ying +2 位作者 SHI XiaoTong FANG Qun HUANG Jiang 《Science China Chemistry》 SCIE EI CAS 2012年第4期531-536,共6页
A sequential injection analysis (SIA) system based on polydimethylsiloxane (PDMS) chip with integrated pneumatic-actuated valves was developed. A novel SIA operation mode using multiphase laminar flow effect and pneum... A sequential injection analysis (SIA) system based on polydimethylsiloxane (PDMS) chip with integrated pneumatic-actuated valves was developed. A novel SIA operation mode using multiphase laminar flow effect and pneumatic microvalve control was proposed. The sample and reagent solutions were synchronously loaded and injected in the chip-based sample injection module instead of multi-step sequential injection by a multiposition valve and a reciprocating pump as in conventional SIA system. The sample and reagent injection volumes were reduced to ca. 1.1 nL. The present system has the advantages of simple structure, fast and convenient operation, low sample and reagent consumption, and high degree of integration and automation. The system operation conditions were optimized using fluorescein as model sample. Its feasibility in biological analysis was preliminarily demonstrated in enzyme inhibition assay. 展开更多
关键词 microfluidic chip pdms chip pneumatic-actuated valve sequential injection analysis
原文传递
Observation of memristive behavior in PDMS-glass nanofluidic chip
2
作者 Weiling Sun Yike Xiao +5 位作者 Pingyuan Yan Fei Sun Xuan Zhang Chuanxiang Sheng Qi Wang Yefeng Yu 《Nano Research》 2025年第2期725-732,共8页
Nanofluidic memristors,which use ions in electrolyte solutions as carriers,have been developed rapidly and brought new opportunities for the development of neuromorphic devices.Utilizing the transport and accumulation... Nanofluidic memristors,which use ions in electrolyte solutions as carriers,have been developed rapidly and brought new opportunities for the development of neuromorphic devices.Utilizing the transport and accumulation of ions in nanochannels to process information is an endeavor to realize the nanofluidic memristor.In this study,we report a new nanofluidic memristor,which is a polydimethylsiloxane(PDMS)-glass chip with two platinum(Pt)electrodes and well-aligned multi-nanochannels within PDMS for ion enrichment and depletion.The device not only exhibits typical bipolar memristive behavior and ion current rectification(ICR)but also demonstrates excellent endurance,maintaining stable performance after 100 sweep cycles.We systematically investigate the key factors affecting ion transport behavior in this memristor.The results show that the ICR ratio of the current-voltage(I-V)hysteresis curves decreases with increasing scan rate and solution concentration.Zeta potential measurements are introduced to reveal that the PDMS surface carries more negative charges in higher pH solutions,resulting in more pronounced memristive and ICR effects.Furthermore,our memristor can simulate short-term synaptic plasticity,such as paired-pulse facilitation(PPF)and paired-pulse depression(PPD),with a relatively low energy consumption of 12 pJ per spike per channel.Potentially,the inherent accessibility and robustness of our nanofluidic memristors facilitate the optimization of device structure and performance.These important observations and investigations lay a foundation for advancing energy-saving and efficient neuromorphic computing. 展开更多
关键词 polydimethylsiloxane(pdms)-glass chip nanofluidic memristor nanochannel short-term synaptic plasticity(STP)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部