Pd/Ce0.67Zr0.33O2 catalyst was pretreated in different atmosphere respectively, and characterized by CO chemical adsorption, XPS, HR-TEM, H2-TPR, Raman, OSC and in situ DRIFTS to investigate the effect of the structur...Pd/Ce0.67Zr0.33O2 catalyst was pretreated in different atmosphere respectively, and characterized by CO chemical adsorption, XPS, HR-TEM, H2-TPR, Raman, OSC and in situ DRIFTS to investigate the effect of the structure properties of PdOx species on the catalytic performance for CO, HC and NOx elimination. The results show that Pd/CZ catalyst pretreated in air atmosphere has higher oxidation activity of HC due to having high Pd dispersion and strong interaction between PdOx and CZ support. Pd/CZ-H catalyst pretreated in reducing atmosphere exhibits better catalytic performance of NOx elimination because of having relatively big Pd particle size, more Pd species in metallic state and higher concentration of oxygen vacancies. While for the Pd/CZ-RG catalyst pretreated in reactant atmosphere, strong adsorption of HC species on the surface of catalysts would lead to a part of active sites being covered, which inhibits HC and NO conversions.展开更多
基金Project supported by the Key Program of Science Technology Department of Zhejiang Province(2018C03037)
文摘Pd/Ce0.67Zr0.33O2 catalyst was pretreated in different atmosphere respectively, and characterized by CO chemical adsorption, XPS, HR-TEM, H2-TPR, Raman, OSC and in situ DRIFTS to investigate the effect of the structure properties of PdOx species on the catalytic performance for CO, HC and NOx elimination. The results show that Pd/CZ catalyst pretreated in air atmosphere has higher oxidation activity of HC due to having high Pd dispersion and strong interaction between PdOx and CZ support. Pd/CZ-H catalyst pretreated in reducing atmosphere exhibits better catalytic performance of NOx elimination because of having relatively big Pd particle size, more Pd species in metallic state and higher concentration of oxygen vacancies. While for the Pd/CZ-RG catalyst pretreated in reactant atmosphere, strong adsorption of HC species on the surface of catalysts would lead to a part of active sites being covered, which inhibits HC and NO conversions.