This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis...This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.展开更多
Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shap...Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shape memory alloy was produced by laser powder bed fusion(L-PBF)using pre-alloyed NiTi and elemental Nb powders.The effect of solution treatment on the microstructure,phase transformation behavior and mechanical/functional performances was investigated.The in-situ alloyed(NiTi)91Nb9 alloy exhibits a submicron cellular-dendritic structure surrounding the supersaturated B2-NiTi matrix.Upon high-temperature(1273 K)solution treatment,Nb-rich precipitates were precipitated from the supersaturated matrix.The fragmentation and spheroidization of the NiTi/Nb eutectics occurred during solution treatment,leading to a morphological transition from mesh-like into rod-like and sphere-like.Coarsening of theβ-Nb phases occurred with increasing holding time.The martensite transformation temperature increases after solution treatment,mainly attributed to:(i)reduced lattice distortion due to the Nb expulsion from the supersaturated B2-NiTi,and(ii)the Ti expulsion from theβ-Nb phases that lowers the ratio Ni/Ti in the B2-NiTi matrix,which resulted from the microstructure changes from non-equilibrium to equilibrium state.The thermal hysteresis of the solutionized alloys is around 145 K after 20%pre-deformation,which is comparable to the conventional NiTiNb alloys.A short-term solution treatment(i.e.at 1273 K for 30 min)enhances the ductility and strength of the as-printed specimen,with the increase of fracture stress from(613±19)MPa to(781±20)MPa and the increase of fracture strain from(7.6±0.1)%to(9.5±0.4)%.Both the as-printed and solutionized samples exhibit good tensile shape memory effects with recovery rates>90%.This work suggests that post-process heat treatment is essential to optimize the microstructure and improve the mechanical performances of the L-PBF in-situ alloyed parts.展开更多
Beta Ti−35Nb sandwich-structured composites with various reinforcing layers were designed and produced using additive manufacturing(AM)to achieve a balance between light weight and high strength.The impact of reinforc...Beta Ti−35Nb sandwich-structured composites with various reinforcing layers were designed and produced using additive manufacturing(AM)to achieve a balance between light weight and high strength.The impact of reinforcing layers on the compressive deformation behavior of porous composites was investigated through micro-computed tomography(Micro-CT)and finite element method(FEM)analyses.The results indicate that the addition of reinforcement layers to sandwich structures can significantly enhance the compressive yield strength and energy absorption capacity of porous metal structures;Micro-CT in-situ observation shows that the strain of the porous structure without the reinforcing layer is concentrated in the middle region,while the strain of the porous structure with the reinforcing layer is uniformly distributed;FEM analysis reveals that the reinforcing layers can alter stress distribution and reduce stress concentration,thereby promoting uniform deformation of the porous structure.The addition of reinforcing layer increases the compressive yield strength of sandwich-structured composite materials by 124%under the condition of limited reduction of porosity,and the yield strength increases from 4.6 to 10.3 MPa.展开更多
In-situ observation of porosity formation during directional solidification of two Al-Si alloys (7%Si and 13%Si) was made by using of micro-focus X-ray imaging.In both alloys,small spherical pores initially form in th...In-situ observation of porosity formation during directional solidification of two Al-Si alloys (7%Si and 13%Si) was made by using of micro-focus X-ray imaging.In both alloys,small spherical pores initially form in the melt far away from the eutectic solid-liquid (S/L) interface and then grow and coagulate during solidification.Some pores can float and escape from the solidifying melt front at a relatively high velocity.At the end of solidification,the remaining pores maintain spherical morphology in the near eutectic alloy but become irregular in the hypoeutectic alloy.This is attributed to different solidification modes and aluminum dendrite interactions between the two alloys.The mechanism of the porosity formation is briefly discussed in this paper.展开更多
This research has investigated the in-situ Ti alloying of aluminum alloys and its application to A356 alloys and wheels through the evaluation of microstructure and mechanical properties. The results showed that stabl...This research has investigated the in-situ Ti alloying of aluminum alloys and its application to A356 alloys and wheels through the evaluation of microstructure and mechanical properties. The results showed that stable titanium content can be obtained by adding a small quantity of TiO2 into electrolyte of pure aluminum. Under this approach, a greater than 95% absorptivity of titanium was achieved, and the microstructure of the specimens was changed to fine equiaxed grains from coarse columnar grains in the pure aluminum. In comparison with the tradition A356 alloys and wheels, the corresponding microstructure in the testing A356 alloys and wheels was finer. Although the tensile strength was similar between the testing and the tradition A356 alloys and wheels, the ductility of the former (testing) is superior to that of the later (tradition), leading to an excellent combination of strength and ductility from the testing alloys and wheels.展开更多
The load partitioning between the magnesium and titanium phases in an extruded Mg-15%Ti(vol.%) composite from room temperature up to 300 ℃ using synchrotron radiation diffraction during in-situ compression tests. Dur...The load partitioning between the magnesium and titanium phases in an extruded Mg-15%Ti(vol.%) composite from room temperature up to 300 ℃ using synchrotron radiation diffraction during in-situ compression tests. During compression, the magnesium matrix composite deforms mainly by the activation of the extension twinning system up to 200 ℃. The volume fraction of twins increases with the plastic strain but decrease with the compression temperature. Hard titanium particles bear an additional load transferred by the soft magnesium matrix from room temperature up to 300 ℃. This effect is amplified after yield stress during plastic deformation. Additionally, twins within magnesium grains behaves as an additional reinforcement at low temperature(below 200 ℃) inducing an increase in the work hardening of the composite.展开更多
In this study,the texture evolutions of two Mg materials during tension are explored.In-situ X-ray synchrotron and Visco-Plastic SelfConsistent(VPSC) modeling are employed to investigate the different deformation mode...In this study,the texture evolutions of two Mg materials during tension are explored.In-situ X-ray synchrotron and Visco-Plastic SelfConsistent(VPSC) modeling are employed to investigate the different deformation modes between pure Mg and Mg-15Gd(wt.%) alloy.These two materials with a strong extrusion texture show large different slip/twinning activity behaviors during tensile deformation.The basal(a) slip has the highest contribution to the initial stage of plastic deformation for pure Mg.During the subsequent plastic deformation,the prismatic slip is dominant due to the strong ED//(100) fiber texture.In contrast,the deformation behavior of Mg-15Gd alloy is more complex.Twinning and basal slip are dominant at the early stage of plastic deformation,but further deformation results in the increased activation of prismatic and pyramidal slips.In comparison to pure Mg,the ratios of the critical resolved shear stress(CRSS) between non-basal slip and basal slip of the Mg-15Gd alloy are much lower.展开更多
Critical properties of metallic materials,such as the yield stress,corrosion resistance and ductility depend on the microstructure and its grain size and size distribution.Solute atoms that favorably segregate to grai...Critical properties of metallic materials,such as the yield stress,corrosion resistance and ductility depend on the microstructure and its grain size and size distribution.Solute atoms that favorably segregate to grain boundaries produce a pinning atmosphere that exerts a drag pressure on the boundary motion,which strongly affects the grain growth behavior during annealing.In the current work,the characteristics of grain growth in an annealed Mg-1 wt.%Mn-1 wt.%Nd magnesium alloy were investigated by advanced experimental and modeling techniques.Systematic quasi in-situ orientation mappings with a scanning electron microscope were performed to track the evolution of local and global microstructural characteristics as a function of annealing time.Solute segregation at targeted grain boundaries was measured using three-dimensional atom probe tomography.Level-set computer simulations were carried with different setups of driving forces to explore their contribution to the microstructure development with and without solute drag.The results showed that the favorable growth advantage for some grains leading to a transient stage of abnormal grain growth is controlled by several drivers with varying importance at different stages of annealing.For longer annealing times,residual dislocation density gradients between large and smaller grains are no longer important,which leads to microstructure stability due to predominant solute drag.Local fluctuations in residual dislocation energy and solute concentration near grain boundaries cause different boundary segments to migrate at different rates,which affects the average growth rate of large grains and their evolved shape.展开更多
Anti-coking oxide films were prepared on a 25Cr35Ni and 35Cr45Ni alloy surface under the low oxygen partialpressure atmosphere of a H2-H2O mixture. The composition and phase structure of the oxide films were analyzed ...Anti-coking oxide films were prepared on a 25Cr35Ni and 35Cr45Ni alloy surface under the low oxygen partialpressure atmosphere of a H2-H2O mixture. The composition and phase structure of the oxide films were analyzed by energydispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The anti-cokingperformance of a mini tube made of a HP40 (25Cr35Ni) alloy was evaluated on a bench scale pyrolysis and coking test unit.The results showed that the surface Fe and Ni content decreased after the oxidation of the two alloys in a low oxygen partialpressure atmosphere. The oxide films were mainly composed of MnCr_(2)O_(4) and Cr_(2)O_(3). The average mass of coke in the minitube with oxide film decreased by 87% relative to that of a tube without an oxide film when the cracking temperature was 900℃. The ethylene, propylene, and butadiene yields in the pyrolysis tests were almost the same for the mini tubes withand without an oxide film. The oxide film on the alloy surface effectively inhibited catalytic filamentous coke formation.An industrial test showed that the run length of the cracking furnace with the in-situ coating technology was significantlyextended.展开更多
In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after...In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after irradiation for 10 h and aging for 9 h at 250℃ is 1.64 GPa,which is approximately 64% higher than that of the samples before being treated.It is mainly attributed to γ'precipitates on the basal plane after irradiation and the high-density nanoscale β'precipitates on the prismatic plane after aging,which should be closely related to the irradiation-induced homogenous clusters.The latter plays a key role in precipitation hardening.This result paves a way to improve the mechanical properties of metallic materials by tailoring the precipitation through irradiation and aging.展开更多
Direct methanol fuel cells(DMFC) are widely considered to be an ideal green energy conversion device but their widespread applications are limited by the high price of the Pt-based catalysts and the instability in ter...Direct methanol fuel cells(DMFC) are widely considered to be an ideal green energy conversion device but their widespread applications are limited by the high price of the Pt-based catalysts and the instability in terms of surface CO toxicity in long-term operation.Herein,the PtFe alloy nanoparticles(NPs) with small particle size(~4.12 nm) supported on carbon black catalysts with different Pt/Fe atomic ratios(Pt_(1)Fe_(2)/C,Pt_(3)Fe_(4)/C,Pt_(1)Fe_(1)/C,and Pt_(2)Fe_(1)/C) are successfully prepared for enhanced anti-CO poisoning during methanol oxidation reaction(MOR).The optimal atomic ratio of Pt/Fe for the MOR is 1:2,and the mass activity of Pt_(1)Fe_(2)/C(5.40 A mg_(Pt)^(-1)) is 13.5 times higher than that of conventional commercial Pt/C(Pt/C-JM)(0.40 A mg_(Pt)^(-1)).The introduction of Fe into the Pt lattice forms the PtFe alloy phase,and the electron density of Pt is reduced after forming the PtFe alloy.In-situ Fourier transform infrared results indicate that the addition of oxyphilic metal Fe has reduced the adsorption of reactant molecules on Pt during the MOR.The doping of Fe atoms helps to desorb toxic intermediates and regenerate Pt active sites,promoting the cleavage of C-O bonds with good selectivity of CO_(2)(58.1%).Moreover,the Pt_(1)Fe_(2)/C catalyst exhibits higher CO tolerance,methanol electrooxidation activity,and long-term stability than other Pt_(x)Fe_(y)/C catalysts.展开更多
Heterostructured metals and alloys are a new class of materials in which mechanical behaviors between the heterogeneous regions are significantly different,and the mechanical properties of bulk materials are superior ...Heterostructured metals and alloys are a new class of materials in which mechanical behaviors between the heterogeneous regions are significantly different,and the mechanical properties of bulk materials are superior to the superposition of individual regions.In this paper,three distinct types of heterostructures were constructed in Mg-2.77Y(wt.%)alloy by applying simple thermomechanical processing.Namely,Type I:the non-recrystallized grains of several tens of microns were embedded in the micron-scaled recrystallized grains that were distributed along shear bands and dispersed near grain boundaries;Type II:the aggregations of micron-scaled recrystallized grains were surrounded by the non-recrystallized grains;Type II:the micron-scaled recrystallized grains dominated the microstructure,and the non-recrystallized regions with diameters of tens of micrometers were surrounded by those fine recrystallized grains.Mechanical tests showed that the material with type III heterostructure had the optimal combination of yield strength and uniform elongation.This is attributed to its remarkable hetero-deformation induced(HDI)strengthening and dislocation strengthening.At the initial stage of plastic deformation(engineering strain below 4%),the rapid accumulation of geometrically necessary dislocations(GNDs)at the interfaces between recrystallized and non-recrystallized regions and between neighboring recrystallized grains lead to the significant HDI strengthening.As deformation proceeded,the HDI strengthening effect gradually decreased,and the traditional dislocation strengthening that was caused by GNDs accumulation at grain boundaries became significant.In-situ electron back-scattered diffraction(EBSD)testing revealed that the non-basal slip in the non-recrystallized regions became more remarkable in the late stage of deformation,which improved ductility and strain hardening of the alloy.These findings provide new insight into the design of high-performance hexagonal close-packed structural materials by using the concept of HDI strengthening.展开更多
Exploring noble metal-free catalyst materials for high efficient electrochemical water splitting to produce hydrogen is strongly desired for renewable energy development.In this article,a novel bifunctional catalytic ...Exploring noble metal-free catalyst materials for high efficient electrochemical water splitting to produce hydrogen is strongly desired for renewable energy development.In this article,a novel bifunctional catalytic electrode of insitu-grown type for alkaline water splitting based on FeCoNi alloy substrate has been successfully prepared via a facile one-step hydrothermal oxidation route in an alkaline hydrogen peroxide medium.It shows that the matrix alloy with the atom ratio 4∶3∶3 of Fe∶Co∶Ni can obtain the best catalytic performance when hydrothermally treated at 180℃for 18 h in the solution containing 1.8 M hydrogen peroxide and 3.6 M sodium hydroxide.The as-prepared Fe_(0.4)Co_(0.3)Ni_(0.3)-1.8 electrode exhibits small overpotentials of only 184 and 175 mV at electrolysis current density of 10 mA cm^(-2)for alkaline OER and HER processes,respectively.The overall water splitting at electrolysis current density of 10 mA cm^(-2)can be stably delivered at a low cell voltage of 1.62 V.These characteristics including the large specific surface area,the high surface nickel content,the abundant catalyst species,the balanced distribution between bivalent and trivalent metal ions,and the strong binding of in-situ naturally growed catalytic layer to matrix are responsible for the prominent catalytic performance of the Fe_(0.4)Co_(0.3)Ni_(0.3)-1.8 electrode,which can act as a possible replacement for expensive noble metal-based materials.展开更多
The microstructural evolution and phase transformations during partial remelting of in-situ Mg2Sip/AM60B composite modified by SiC and Sr were investigated. The results indicate that SiC and Sr are effective for refi...The microstructural evolution and phase transformations during partial remelting of in-situ Mg2Sip/AM60B composite modified by SiC and Sr were investigated. The results indicate that SiC and Sr are effective for refining primary α-Mg grains and Mg2Si particles. After being partially remelted, a semisolid microstructure with small and spheroidal primary α-Mg particles can be obtained. The microstructural evolution during partial remelting can be divided into four stages: the initial rapid coarsening, structural separation, spheroidization and final coarsening, which are essentially caused by the phase transformations of β→α, α+β→L and α→L, α→L, and α→L and L→α, respectively. The Mg2Si particles have not obvious effect on the general microstructural evolution steps, but can slower the evolution progress and change the coarsening mechanism. During partial remelting, Mg2Si particles first become blunt and then become spheroidal because of melting of their edges and corners, and finally are coarsened owing to Ostwald ripening.展开更多
Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macrosc...Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macroscopic mechanical response of magnesium alloys under cyclic loading conditions, we employed a crystal plasticity model to analyze the stress-strain curves, specific crystal plane diffraction intensities, and the temporal evolution of various microscopic deformation mechanisms and twinning volume fractions for an extruded magnesium alloy, AXM10304, containing coherent precipitates. The research findings indicate that precipitation does not fundamentally alter the microscopic mechanisms of this alloy. However, it hinders twinning during the compression stage, mildly promotes detwinning during the tension stage, and enhances tension secondary hardening by elevating the difficulty of activation of the prismatic slip.展开更多
Nb-16Si-24Ti-6Cr-6A1-2Hf-xCe (x =0, 0.05, 0.1,02.5, 0.5, 1 (%, atom fraction)) in situ composites were prepared by arc melting The microstmcture and the effect of rare earth element cerium on 1250℃ oxidation resi...Nb-16Si-24Ti-6Cr-6A1-2Hf-xCe (x =0, 0.05, 0.1,02.5, 0.5, 1 (%, atom fraction)) in situ composites were prepared by arc melting The microstmcture and the effect of rare earth element cerium on 1250℃ oxidation resistance of the composites were investigated with scanning electron microscopy (SEM) and X-ray energy disperse spectrum (EDS), as well as X-ray diffraction (XRD). The experimental results showed that the high temperature oxidation resistance of the alloy was improved by adding a proper amount of cerium (Ce). The effect of Ce was considered as the concurrent of the following three factors: first, the oxide of Ce formed in the interface reduced the internal oxidation rate; second, the lath shaped oxide containing Ce increased the cracking resistance and reduced the expansion of the oxide scale; and third, the decrease of the sificide volume fraction on account of Ce addition reduces the power of the sample resisting oxygen penetration.展开更多
MnFeCoCuNix high-entropy alloys(HEAs)with different Ni contents were fabricated by vacuum induction melting.XRD and SEM−EDS were used to analyze the phase constitution and structure,and the tensile properties of the s...MnFeCoCuNix high-entropy alloys(HEAs)with different Ni contents were fabricated by vacuum induction melting.XRD and SEM−EDS were used to analyze the phase constitution and structure,and the tensile properties of the samples were determined using a universal tensile tester.The results show that the HEAs consist of a dual-phase structure,in which FCC1 phase is rich in Fe and Co,while the FCC2 phase has high contents of Cu and Mn.As Ni content increases,the segregation of Cu decreases,accompanied by the decrease of FCC2 phase.Moreover,the tensile strength of the HEAs increases first and then decreases,and the elongation increases slightly.This is attributed to the combined effect of interface strengthening and solid solution strengthening.The in-situ stretched MnFeCoCuNi0.5 alloy shows obvious neck shrinkage during the tensile fracture process.In the initial deformation stage,the slip lines show different morphologies in the dual-phase structure.However,in the later stage,the surface slip lines become longer and denser due to the redistribution of atoms and the re-separation of the dissolved phase.展开更多
In order to develop a new type of contact cable with high strengthand high electrical conductivity, Cu-Cr alloy series were selected asmaterials and cu-Cr alloy castings were produced by means ofdirectional solidifica...In order to develop a new type of contact cable with high strengthand high electrical conductivity, Cu-Cr alloy series were selected asmaterials and cu-Cr alloy castings were produced by means ofdirectional solidification continu- ous casting (DSCC) process. theresults show that the fibrillar strengthening phase, β-Cr, orderlyarranges among the copper matrix phase along the wire direction; andmicrostructure of in-situ composite forms, which retains the basicproperty of good conductivity of the copper matrix and meanwhileobtains the strengthening effect ofβ-Cr phase.展开更多
An innovative semisolid technique termed as vibrating cooling slope(VCS)has been applied to producing in-situ Al-25%Mg2Si(mass fraction)composite.The molten Al-16.5Mg-9.4%Si(mass fraction)alloy with 100°C superhe...An innovative semisolid technique termed as vibrating cooling slope(VCS)has been applied to producing in-situ Al-25%Mg2Si(mass fraction)composite.The molten Al-16.5Mg-9.4%Si(mass fraction)alloy with 100°C superheat was poured on the surface of an inclined copper plate(set at 45°inclined angle)while it was vibrated at a frequency of 40 Hz and an amplitude of 400μm.After travelling the length of 40 cm on the slope,the resultant semisolid alloy was cast into a steel mold.For the purpose of comparison,reference composite samples were made by gravity casting(GC)and conventionally still cooling slope casting(CS)methods using the same alloy under identical conditions.The samples were hot extruded at 500°C.It was concluded that the size of Mg2Si particles was decreased by about 50%and 70%for the CS and VCS produced samples respectively when compared to that of the GC produced sample.Despite of their higher porosity contents,both the as-cast and hot-extruded VCS processed samples exhibited higher hardness,shear yield stress(SYS)and ultimate shear strength(USS)values as compared with their GC produced counterparts.These results were attributed to the refined and modified microstructure obtained via this newly developed technique.展开更多
Bulk Cu-Ti alloy reinforced by TiB2 nano particles was prepared using in-situ reaction between Cu 3.4%Ti and Cu-0.7%B master alloys along with rapid solidification and subsequent heat treatment for 1-10 h at 900 ℃. H...Bulk Cu-Ti alloy reinforced by TiB2 nano particles was prepared using in-situ reaction between Cu 3.4%Ti and Cu-0.7%B master alloys along with rapid solidification and subsequent heat treatment for 1-10 h at 900 ℃. High-resolution transmission electron microscopy (HRTEM) characterization showed that primary TiB2 nano particles and TiB whiskers were formed by in-situ reaction between Ti and B in the liquid copper. The formation of TiB whiskers within the melt led to coarsening of TiB2 particles. Primary TiB2 particles were dispersed along the grain boundaries and hindered grain growth at high temperature, while the secondary TiB2 particles were formed during heat treatment of the alloy by diffusion reaction of solute titanium and boron inside the grains. Electrical conductivity and hardness of the composite were evaluated during heat treatment. The results indicated that the formation of secondary TiB2 particles in the matrix caused a delay in hardness reduction at high temperature. The electrical conductivity and hardness increased up to 8 h of heat treatment and reached 33.5% IACS and HV 158, respectively.展开更多
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region(152131/18E).
文摘This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.
基金supported by the Natural Science Foundation of Shandong Province (ZR2020YQ39, ZR2020ZD05)Taishan Scholar Foundation of Shandong Province (tsqn202211002)the Young Scholars Program of Shandong University (Grant Number 2018WLJH24)
文摘Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shape memory alloy was produced by laser powder bed fusion(L-PBF)using pre-alloyed NiTi and elemental Nb powders.The effect of solution treatment on the microstructure,phase transformation behavior and mechanical/functional performances was investigated.The in-situ alloyed(NiTi)91Nb9 alloy exhibits a submicron cellular-dendritic structure surrounding the supersaturated B2-NiTi matrix.Upon high-temperature(1273 K)solution treatment,Nb-rich precipitates were precipitated from the supersaturated matrix.The fragmentation and spheroidization of the NiTi/Nb eutectics occurred during solution treatment,leading to a morphological transition from mesh-like into rod-like and sphere-like.Coarsening of theβ-Nb phases occurred with increasing holding time.The martensite transformation temperature increases after solution treatment,mainly attributed to:(i)reduced lattice distortion due to the Nb expulsion from the supersaturated B2-NiTi,and(ii)the Ti expulsion from theβ-Nb phases that lowers the ratio Ni/Ti in the B2-NiTi matrix,which resulted from the microstructure changes from non-equilibrium to equilibrium state.The thermal hysteresis of the solutionized alloys is around 145 K after 20%pre-deformation,which is comparable to the conventional NiTiNb alloys.A short-term solution treatment(i.e.at 1273 K for 30 min)enhances the ductility and strength of the as-printed specimen,with the increase of fracture stress from(613±19)MPa to(781±20)MPa and the increase of fracture strain from(7.6±0.1)%to(9.5±0.4)%.Both the as-printed and solutionized samples exhibit good tensile shape memory effects with recovery rates>90%.This work suggests that post-process heat treatment is essential to optimize the microstructure and improve the mechanical performances of the L-PBF in-situ alloyed parts.
基金the Hunan Young Scientific Innovative Talents Program,China(No.2020RC3040)Outstanding Youth Fund of Hunan Natural Science Foundation,China(Nos.2021JJ20011,2021JJ40600,2021JJ40590)the National Natural Science Foundation of China(Nos.52001030,52204371)..
文摘Beta Ti−35Nb sandwich-structured composites with various reinforcing layers were designed and produced using additive manufacturing(AM)to achieve a balance between light weight and high strength.The impact of reinforcing layers on the compressive deformation behavior of porous composites was investigated through micro-computed tomography(Micro-CT)and finite element method(FEM)analyses.The results indicate that the addition of reinforcement layers to sandwich structures can significantly enhance the compressive yield strength and energy absorption capacity of porous metal structures;Micro-CT in-situ observation shows that the strain of the porous structure without the reinforcing layer is concentrated in the middle region,while the strain of the porous structure with the reinforcing layer is uniformly distributed;FEM analysis reveals that the reinforcing layers can alter stress distribution and reduce stress concentration,thereby promoting uniform deformation of the porous structure.The addition of reinforcing layer increases the compressive yield strength of sandwich-structured composite materials by 124%under the condition of limited reduction of porosity,and the yield strength increases from 4.6 to 10.3 MPa.
基金funded by the Natural Science Foundation of China under grant No:50771031GM Research Funding under contract No:GM-RP-07-211
文摘In-situ observation of porosity formation during directional solidification of two Al-Si alloys (7%Si and 13%Si) was made by using of micro-focus X-ray imaging.In both alloys,small spherical pores initially form in the melt far away from the eutectic solid-liquid (S/L) interface and then grow and coagulate during solidification.Some pores can float and escape from the solidifying melt front at a relatively high velocity.At the end of solidification,the remaining pores maintain spherical morphology in the near eutectic alloy but become irregular in the hypoeutectic alloy.This is attributed to different solidification modes and aluminum dendrite interactions between the two alloys.The mechanism of the porosity formation is briefly discussed in this paper.
文摘This research has investigated the in-situ Ti alloying of aluminum alloys and its application to A356 alloys and wheels through the evaluation of microstructure and mechanical properties. The results showed that stable titanium content can be obtained by adding a small quantity of TiO2 into electrolyte of pure aluminum. Under this approach, a greater than 95% absorptivity of titanium was achieved, and the microstructure of the specimens was changed to fine equiaxed grains from coarse columnar grains in the pure aluminum. In comparison with the tradition A356 alloys and wheels, the corresponding microstructure in the testing A356 alloys and wheels was finer. Although the tensile strength was similar between the testing and the tradition A356 alloys and wheels, the ductility of the former (testing) is superior to that of the later (tradition), leading to an excellent combination of strength and ductility from the testing alloys and wheels.
基金financial support of the Spanish Ministry of Economy and Competitiveness under project number MAT2016-78850-Rprovision of beamtime at the P07 beamline of the Petra Ⅲ synchrotron facility under the project I-20170054EC。
文摘The load partitioning between the magnesium and titanium phases in an extruded Mg-15%Ti(vol.%) composite from room temperature up to 300 ℃ using synchrotron radiation diffraction during in-situ compression tests. During compression, the magnesium matrix composite deforms mainly by the activation of the extension twinning system up to 200 ℃. The volume fraction of twins increases with the plastic strain but decrease with the compression temperature. Hard titanium particles bear an additional load transferred by the soft magnesium matrix from room temperature up to 300 ℃. This effect is amplified after yield stress during plastic deformation. Additionally, twins within magnesium grains behaves as an additional reinforcement at low temperature(below 200 ℃) inducing an increase in the work hardening of the composite.
基金sponsored by the China Postdoctoral Science Foundation (Grant No. 2020M673156)Shanghai Pujiang Program (Grant No. 20PJ1404900)。
文摘In this study,the texture evolutions of two Mg materials during tension are explored.In-situ X-ray synchrotron and Visco-Plastic SelfConsistent(VPSC) modeling are employed to investigate the different deformation modes between pure Mg and Mg-15Gd(wt.%) alloy.These two materials with a strong extrusion texture show large different slip/twinning activity behaviors during tensile deformation.The basal(a) slip has the highest contribution to the initial stage of plastic deformation for pure Mg.During the subsequent plastic deformation,the prismatic slip is dominant due to the strong ED//(100) fiber texture.In contrast,the deformation behavior of Mg-15Gd alloy is more complex.Twinning and basal slip are dominant at the early stage of plastic deformation,but further deformation results in the increased activation of prismatic and pyramidal slips.In comparison to pure Mg,the ratios of the critical resolved shear stress(CRSS) between non-basal slip and basal slip of the Mg-15Gd alloy are much lower.
基金support of the Deutsche Forschungsgemeinschaft(DFG),Grant no.AL 1343/7–1,AL 1343/8–1,Yi 103/3–1。
文摘Critical properties of metallic materials,such as the yield stress,corrosion resistance and ductility depend on the microstructure and its grain size and size distribution.Solute atoms that favorably segregate to grain boundaries produce a pinning atmosphere that exerts a drag pressure on the boundary motion,which strongly affects the grain growth behavior during annealing.In the current work,the characteristics of grain growth in an annealed Mg-1 wt.%Mn-1 wt.%Nd magnesium alloy were investigated by advanced experimental and modeling techniques.Systematic quasi in-situ orientation mappings with a scanning electron microscope were performed to track the evolution of local and global microstructural characteristics as a function of annealing time.Solute segregation at targeted grain boundaries was measured using three-dimensional atom probe tomography.Level-set computer simulations were carried with different setups of driving forces to explore their contribution to the microstructure development with and without solute drag.The results showed that the favorable growth advantage for some grains leading to a transient stage of abnormal grain growth is controlled by several drivers with varying importance at different stages of annealing.For longer annealing times,residual dislocation density gradients between large and smaller grains are no longer important,which leads to microstructure stability due to predominant solute drag.Local fluctuations in residual dislocation energy and solute concentration near grain boundaries cause different boundary segments to migrate at different rates,which affects the average growth rate of large grains and their evolved shape.
基金the scientific research project of China Petroleum&Chemical Corporation(Grant No.411048).
文摘Anti-coking oxide films were prepared on a 25Cr35Ni and 35Cr45Ni alloy surface under the low oxygen partialpressure atmosphere of a H2-H2O mixture. The composition and phase structure of the oxide films were analyzed by energydispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The anti-cokingperformance of a mini tube made of a HP40 (25Cr35Ni) alloy was evaluated on a bench scale pyrolysis and coking test unit.The results showed that the surface Fe and Ni content decreased after the oxidation of the two alloys in a low oxygen partialpressure atmosphere. The oxide films were mainly composed of MnCr_(2)O_(4) and Cr_(2)O_(3). The average mass of coke in the minitube with oxide film decreased by 87% relative to that of a tube without an oxide film when the cracking temperature was 900℃. The ethylene, propylene, and butadiene yields in the pyrolysis tests were almost the same for the mini tubes withand without an oxide film. The oxide film on the alloy surface effectively inhibited catalytic filamentous coke formation.An industrial test showed that the run length of the cracking furnace with the in-situ coating technology was significantlyextended.
基金supported by the National Natural Science Foundation of China(Grant Nos.51871222,52171021,and 51801214)Liaoning Provincial Natural Science Foundation(2019-MS-335)the research fund of SYNL。
文摘In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after irradiation for 10 h and aging for 9 h at 250℃ is 1.64 GPa,which is approximately 64% higher than that of the samples before being treated.It is mainly attributed to γ'precipitates on the basal plane after irradiation and the high-density nanoscale β'precipitates on the prismatic plane after aging,which should be closely related to the irradiation-induced homogenous clusters.The latter plays a key role in precipitation hardening.This result paves a way to improve the mechanical properties of metallic materials by tailoring the precipitation through irradiation and aging.
基金supported by the National Natural Science Foundation of China(22162012 and 22202089)the Youth Jinggang Scholars Program in Jiangxi Province([2019]57)+6 种基金the Thousand Talents Plan of Jiangxi Province(jxsq2019201083)the Natural Science Foundation of Jiangxi Province for Distinguished Young Scholars(20224ACB213005)the Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology(JXUSTQJBJ2019002)the Research Foundation of Education Bureau of Jiangxi Province of China(GJJ210833)the Foundation of State Key Laboratory of Physical Chemistry of Solid Surfaces(202022)the China Postdoctoral Science Foundation(2021M693893)the Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry(20212BCD42018)。
文摘Direct methanol fuel cells(DMFC) are widely considered to be an ideal green energy conversion device but their widespread applications are limited by the high price of the Pt-based catalysts and the instability in terms of surface CO toxicity in long-term operation.Herein,the PtFe alloy nanoparticles(NPs) with small particle size(~4.12 nm) supported on carbon black catalysts with different Pt/Fe atomic ratios(Pt_(1)Fe_(2)/C,Pt_(3)Fe_(4)/C,Pt_(1)Fe_(1)/C,and Pt_(2)Fe_(1)/C) are successfully prepared for enhanced anti-CO poisoning during methanol oxidation reaction(MOR).The optimal atomic ratio of Pt/Fe for the MOR is 1:2,and the mass activity of Pt_(1)Fe_(2)/C(5.40 A mg_(Pt)^(-1)) is 13.5 times higher than that of conventional commercial Pt/C(Pt/C-JM)(0.40 A mg_(Pt)^(-1)).The introduction of Fe into the Pt lattice forms the PtFe alloy phase,and the electron density of Pt is reduced after forming the PtFe alloy.In-situ Fourier transform infrared results indicate that the addition of oxyphilic metal Fe has reduced the adsorption of reactant molecules on Pt during the MOR.The doping of Fe atoms helps to desorb toxic intermediates and regenerate Pt active sites,promoting the cleavage of C-O bonds with good selectivity of CO_(2)(58.1%).Moreover,the Pt_(1)Fe_(2)/C catalyst exhibits higher CO tolerance,methanol electrooxidation activity,and long-term stability than other Pt_(x)Fe_(y)/C catalysts.
基金funding from the National Natural Science Foundation of China(No.51922026)the Fundamental Research Funds for the Central Universities(Nos.N2002005,N2007011)the 111 Project(No.B20029).
文摘Heterostructured metals and alloys are a new class of materials in which mechanical behaviors between the heterogeneous regions are significantly different,and the mechanical properties of bulk materials are superior to the superposition of individual regions.In this paper,three distinct types of heterostructures were constructed in Mg-2.77Y(wt.%)alloy by applying simple thermomechanical processing.Namely,Type I:the non-recrystallized grains of several tens of microns were embedded in the micron-scaled recrystallized grains that were distributed along shear bands and dispersed near grain boundaries;Type II:the aggregations of micron-scaled recrystallized grains were surrounded by the non-recrystallized grains;Type II:the micron-scaled recrystallized grains dominated the microstructure,and the non-recrystallized regions with diameters of tens of micrometers were surrounded by those fine recrystallized grains.Mechanical tests showed that the material with type III heterostructure had the optimal combination of yield strength and uniform elongation.This is attributed to its remarkable hetero-deformation induced(HDI)strengthening and dislocation strengthening.At the initial stage of plastic deformation(engineering strain below 4%),the rapid accumulation of geometrically necessary dislocations(GNDs)at the interfaces between recrystallized and non-recrystallized regions and between neighboring recrystallized grains lead to the significant HDI strengthening.As deformation proceeded,the HDI strengthening effect gradually decreased,and the traditional dislocation strengthening that was caused by GNDs accumulation at grain boundaries became significant.In-situ electron back-scattered diffraction(EBSD)testing revealed that the non-basal slip in the non-recrystallized regions became more remarkable in the late stage of deformation,which improved ductility and strain hardening of the alloy.These findings provide new insight into the design of high-performance hexagonal close-packed structural materials by using the concept of HDI strengthening.
基金supported by the Overseas Expertise Introduction Center for Discipline Innovation(D18025)National Nature Science Foundation of China(Grant No.41931295)
文摘Exploring noble metal-free catalyst materials for high efficient electrochemical water splitting to produce hydrogen is strongly desired for renewable energy development.In this article,a novel bifunctional catalytic electrode of insitu-grown type for alkaline water splitting based on FeCoNi alloy substrate has been successfully prepared via a facile one-step hydrothermal oxidation route in an alkaline hydrogen peroxide medium.It shows that the matrix alloy with the atom ratio 4∶3∶3 of Fe∶Co∶Ni can obtain the best catalytic performance when hydrothermally treated at 180℃for 18 h in the solution containing 1.8 M hydrogen peroxide and 3.6 M sodium hydroxide.The as-prepared Fe_(0.4)Co_(0.3)Ni_(0.3)-1.8 electrode exhibits small overpotentials of only 184 and 175 mV at electrolysis current density of 10 mA cm^(-2)for alkaline OER and HER processes,respectively.The overall water splitting at electrolysis current density of 10 mA cm^(-2)can be stably delivered at a low cell voltage of 1.62 V.These characteristics including the large specific surface area,the high surface nickel content,the abundant catalyst species,the balanced distribution between bivalent and trivalent metal ions,and the strong binding of in-situ naturally growed catalytic layer to matrix are responsible for the prominent catalytic performance of the Fe_(0.4)Co_(0.3)Ni_(0.3)-1.8 electrode,which can act as a possible replacement for expensive noble metal-based materials.
基金Project(G2010CB635106)supported by the National Basic Research Program of ChinaProject(NCET-10-0023)supported by the Program for New Century Excellent Talents in University of ChinaProject supported by the Program for Hongliu Outstanding Talents of Lanzhou University of Technology,China
文摘The microstructural evolution and phase transformations during partial remelting of in-situ Mg2Sip/AM60B composite modified by SiC and Sr were investigated. The results indicate that SiC and Sr are effective for refining primary α-Mg grains and Mg2Si particles. After being partially remelted, a semisolid microstructure with small and spheroidal primary α-Mg particles can be obtained. The microstructural evolution during partial remelting can be divided into four stages: the initial rapid coarsening, structural separation, spheroidization and final coarsening, which are essentially caused by the phase transformations of β→α, α+β→L and α→L, α→L, and α→L and L→α, respectively. The Mg2Si particles have not obvious effect on the general microstructural evolution steps, but can slower the evolution progress and change the coarsening mechanism. During partial remelting, Mg2Si particles first become blunt and then become spheroidal because of melting of their edges and corners, and finally are coarsened owing to Ostwald ripening.
文摘Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macroscopic mechanical response of magnesium alloys under cyclic loading conditions, we employed a crystal plasticity model to analyze the stress-strain curves, specific crystal plane diffraction intensities, and the temporal evolution of various microscopic deformation mechanisms and twinning volume fractions for an extruded magnesium alloy, AXM10304, containing coherent precipitates. The research findings indicate that precipitation does not fundamentally alter the microscopic mechanisms of this alloy. However, it hinders twinning during the compression stage, mildly promotes detwinning during the tension stage, and enhances tension secondary hardening by elevating the difficulty of activation of the prismatic slip.
基金Project supported by the National"863"Project (2003AA305810)
文摘Nb-16Si-24Ti-6Cr-6A1-2Hf-xCe (x =0, 0.05, 0.1,02.5, 0.5, 1 (%, atom fraction)) in situ composites were prepared by arc melting The microstmcture and the effect of rare earth element cerium on 1250℃ oxidation resistance of the composites were investigated with scanning electron microscopy (SEM) and X-ray energy disperse spectrum (EDS), as well as X-ray diffraction (XRD). The experimental results showed that the high temperature oxidation resistance of the alloy was improved by adding a proper amount of cerium (Ce). The effect of Ce was considered as the concurrent of the following three factors: first, the oxide of Ce formed in the interface reduced the internal oxidation rate; second, the lath shaped oxide containing Ce increased the cracking resistance and reduced the expansion of the oxide scale; and third, the decrease of the sificide volume fraction on account of Ce addition reduces the power of the sample resisting oxygen penetration.
基金The authors are grateful for the financial supports from the Jiangsu Provincial Science and Technology Plan Project,China(BE2018753/KJ185629)the National Natural Science Foundation of China(51571118)the 2020 Extracurricular Academic Research Fund for College Students of Nanjing University of Science and Technology,China.Zong-han XIE acknowledges the support of the Australian Research Council Discovery Projects.
文摘MnFeCoCuNix high-entropy alloys(HEAs)with different Ni contents were fabricated by vacuum induction melting.XRD and SEM−EDS were used to analyze the phase constitution and structure,and the tensile properties of the samples were determined using a universal tensile tester.The results show that the HEAs consist of a dual-phase structure,in which FCC1 phase is rich in Fe and Co,while the FCC2 phase has high contents of Cu and Mn.As Ni content increases,the segregation of Cu decreases,accompanied by the decrease of FCC2 phase.Moreover,the tensile strength of the HEAs increases first and then decreases,and the elongation increases slightly.This is attributed to the combined effect of interface strengthening and solid solution strengthening.The in-situ stretched MnFeCoCuNi0.5 alloy shows obvious neck shrinkage during the tensile fracture process.In the initial deformation stage,the slip lines show different morphologies in the dual-phase structure.However,in the later stage,the surface slip lines become longer and denser due to the redistribution of atoms and the re-separation of the dissolved phase.
文摘In order to develop a new type of contact cable with high strengthand high electrical conductivity, Cu-Cr alloy series were selected asmaterials and cu-Cr alloy castings were produced by means ofdirectional solidification continu- ous casting (DSCC) process. theresults show that the fibrillar strengthening phase, β-Cr, orderlyarranges among the copper matrix phase along the wire direction; andmicrostructure of in-situ composite forms, which retains the basicproperty of good conductivity of the copper matrix and meanwhileobtains the strengthening effect ofβ-Cr phase.
文摘An innovative semisolid technique termed as vibrating cooling slope(VCS)has been applied to producing in-situ Al-25%Mg2Si(mass fraction)composite.The molten Al-16.5Mg-9.4%Si(mass fraction)alloy with 100°C superheat was poured on the surface of an inclined copper plate(set at 45°inclined angle)while it was vibrated at a frequency of 40 Hz and an amplitude of 400μm.After travelling the length of 40 cm on the slope,the resultant semisolid alloy was cast into a steel mold.For the purpose of comparison,reference composite samples were made by gravity casting(GC)and conventionally still cooling slope casting(CS)methods using the same alloy under identical conditions.The samples were hot extruded at 500°C.It was concluded that the size of Mg2Si particles was decreased by about 50%and 70%for the CS and VCS produced samples respectively when compared to that of the GC produced sample.Despite of their higher porosity contents,both the as-cast and hot-extruded VCS processed samples exhibited higher hardness,shear yield stress(SYS)and ultimate shear strength(USS)values as compared with their GC produced counterparts.These results were attributed to the refined and modified microstructure obtained via this newly developed technique.
基金the Iranian nanotechnology initiative for financially supporting this project
文摘Bulk Cu-Ti alloy reinforced by TiB2 nano particles was prepared using in-situ reaction between Cu 3.4%Ti and Cu-0.7%B master alloys along with rapid solidification and subsequent heat treatment for 1-10 h at 900 ℃. High-resolution transmission electron microscopy (HRTEM) characterization showed that primary TiB2 nano particles and TiB whiskers were formed by in-situ reaction between Ti and B in the liquid copper. The formation of TiB whiskers within the melt led to coarsening of TiB2 particles. Primary TiB2 particles were dispersed along the grain boundaries and hindered grain growth at high temperature, while the secondary TiB2 particles were formed during heat treatment of the alloy by diffusion reaction of solute titanium and boron inside the grains. Electrical conductivity and hardness of the composite were evaluated during heat treatment. The results indicated that the formation of secondary TiB2 particles in the matrix caused a delay in hardness reduction at high temperature. The electrical conductivity and hardness increased up to 8 h of heat treatment and reached 33.5% IACS and HV 158, respectively.