The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a prob...The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a probe must be designed depending on the thickness range that should be accessible. The need for a calibration of the material properties of a conducting plate to enable the measurement of its thickness has been removed. All that is needed is a probe with known dimensions and suitable hardware to create a current pulse and measure a transient magnetic induction.展开更多
A theory model is established to describe the voltage-current responsefunction. The peak amplitude and the zero-crossing time of the transient signal is extracted as theimaging features, array pulsed eddy current (PEC...A theory model is established to describe the voltage-current responsefunction. The peak amplitude and the zero-crossing time of the transient signal is extracted as theimaging features, array pulsed eddy current (PEC) imaging is proposed to detect corrosion. The testresults show that this system has the advantage of fast scanning speed, different imaging mode andquantitative detection, it has a broad application in the aviation nondestructive testing.展开更多
To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy curre...To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters,it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate.展开更多
The electromagnetic concentrative coils are indispensable in the functional magnetic stimulation and have potential applications in nondestructive testing. In this paper, we propose a figure-8-shaped coil being compos...The electromagnetic concentrative coils are indispensable in the functional magnetic stimulation and have potential applications in nondestructive testing. In this paper, we propose a figure-8-shaped coil being composed of two arbitrary oblique elliptical coils, which can change the electromagnetic concentrative region and the magnitude of eddy current density by changing the elliptical shape and/or spread angle between two elliptical coils. Pulsed current is usually the excitation source in the functional magnetic stimulation, so in this paper we derive the analytical solutions of transient pulsed eddy current field in the time domain due to the elliptical concentrative coil placed in an arbitrary position over a half-infinite plane conductor by making use of the scale-transformation, the Laplace transform and the Fourier transform are used in our derivation. Calculation results of field distributions produced by the figure-8-shaped elliptical coil show some behaviours as follows: 1) the eddy currents are focused on the conductor under the geometric symmetric centre of figure-8-shaped coil; 2) the greater the scale factor of ellipse is, the higher the eddy current density is and the wider the concentrative area of eddy current along y axis is; 3) the maximum magnitude of eddy current density increases with the increase of spread angle. When spread angle is 180°, there are two additional reverse concentrative areas on both sides of x axis.展开更多
Crack of conductive component is one of the biggest threats to daily production. In order to detect the crack on conductive component,the pulsed eddy current thermography models were built according to different mater...Crack of conductive component is one of the biggest threats to daily production. In order to detect the crack on conductive component,the pulsed eddy current thermography models were built according to different materials with the cracks based on finite element method(FEM) simulation. The influence of the induction heating temperature distribution with the different defect depths were simulated for the carbon fiber reinforced plastic(CFRP) materials and general metal materials. The grey value of image sequence was extracted to analyze its relationship with the depth of crack. Simulative and experimental results show that in the carbon fiber reinforced composite materials,the bigger depth of the crack is,the larger temperature rise of the crack during the heating phase is; and the bigger depth of the crack is,the faster the cooling rate of the crack during the cooling phase is. In general metal materials,the smaller depth of the crack is,the lager temperature rise of the crack during the heating phase is; and the smaller depth of the crack is,the faster the cooling rate of crack during the cooling phase is.展开更多
Existing eddy current non-destructive testing(NDT) techniques generally do not consider the inclination angle of inclined cracks, which potentially harms a larger region of a tested structure. This work proposes the u...Existing eddy current non-destructive testing(NDT) techniques generally do not consider the inclination angle of inclined cracks, which potentially harms a larger region of a tested structure. This work proposes the use of 2 D scan images generated by using pulsed eddy current(PEC) non-destructive testing(NDT) technique in the quantification of the inclination and depth of inclined cracks. The image-based feature extraction technique e ectively identifies the crack axis, which consequently enables extraction of features from the extracted linear scans. The technique extracts linear scans from the images to allow the extraction of three novel image-based features, namely the length of extracted linear scans(LLS), the linear scan skewness(LSS), and the highest value on linear scan(LSmax). The correlation of the three features to surface crack inclination angles and depths were analysed and found to be highly dependent on the crack depths, while only LLS and LSS are correlated to the crack inclination angles.展开更多
The continuous eddy current pulse treatment(ECPT)combined with heat treatment was employed to heal the microcracks in spin formed Mg alloy tubes and improve their mechanical properties in this study.The results show t...The continuous eddy current pulse treatment(ECPT)combined with heat treatment was employed to heal the microcracks in spin formed Mg alloy tubes and improve their mechanical properties in this study.The results show that all the microcracks in different tube specimens were almost healed after different continuous ECPT schemes up to 15 cycles.The schemes with less cooling intervals exhibited better healing effect and increased the strength and elongation of Mg alloy tubes more obviously.After aging treatment,the strength improvement of the specimens with ECPT was more remarkable than that of the specimens without ECPT,and the elongation decrease of the specimens with ECPT was less evident than that of specimens without ECPT due to the segregation of RE elements on the crack surface.Besides,after solution treatment,the strength reduction and ductility improvement of the specimens with ECPT were more pronounced than that of the specimens without ECPT owing to the notable decrease of dislocation density of the specimens with ECPT.Both narrowed cracks induced by ECPT and the segregation of precipitates in the vicinity of microcrack surface during aging treatment contributed to the maximum strength in the as-spun specimens with ECPT followed by aging treatment.展开更多
[目的]核电厂汽水管线一般在管道外壁加装保温层,从而提高换热效率。目前对于铁磁性管道的检测手段主要为常规超声及超声导波,检测前需要将管道外壁保温层拆除,导致检测工期延长,人力成本增加,无法达到核电厂高质量发展的要求。核电厂...[目的]核电厂汽水管线一般在管道外壁加装保温层,从而提高换热效率。目前对于铁磁性管道的检测手段主要为常规超声及超声导波,检测前需要将管道外壁保温层拆除,导致检测工期延长,人力成本增加,无法达到核电厂高质量发展的要求。核电厂脉冲涡流技术的应用可以省去保温层的拆装,实现不停机在线筛查。检测线圈的放置方式对缺陷的检出能力是脉冲涡流技术重要指标。[方法]文章利用ANSYS中的Maxwell模块进行管件建模及仿真,分别设计同轴式与垂直式检测线圈,保持提离距离、材料一致及其他条件一致下,模拟脉冲涡流对平底缺陷的检测能力。选取核电厂样管进行同轴式与垂直式脉冲涡流测试,将脉冲涡流(Pulsed Eddy Current Testing,PECT)测试结果与超声测厚进行复核,对比两种线圈放置方式对脉冲涡流检测的影响。[结果]研究表明:垂直式线圈相对于同轴式线圈对缺陷检出效果更佳。[结论]核电厂脉冲涡流技术的应用对脉冲涡流技术在核电领域实施具有重要意义。展开更多
文摘The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a probe must be designed depending on the thickness range that should be accessible. The need for a calibration of the material properties of a conducting plate to enable the measurement of its thickness has been removed. All that is needed is a probe with known dimensions and suitable hardware to create a current pulse and measure a transient magnetic induction.
文摘A theory model is established to describe the voltage-current responsefunction. The peak amplitude and the zero-crossing time of the transient signal is extracted as theimaging features, array pulsed eddy current (PEC) imaging is proposed to detect corrosion. The testresults show that this system has the advantage of fast scanning speed, different imaging mode andquantitative detection, it has a broad application in the aviation nondestructive testing.
基金supported by the National Defense Basic Technology Research Program of China(Grant No.Z132013T001)
文摘To determine the wall thickness, conductivity and permeability of a ferromagnetic plate, an inverse problem is established with measured values and calculated values of time-domain induced voltage in pulsed eddy current testing on the plate. From time-domain analytical expressions of the partial derivatives of induced voltage with respect to parameters,it is deduced that the partial derivatives are approximately linearly dependent. Then the constraints of these parameters are obtained by solving a partial linear differential equation. It is indicated that only the product of conductivity and wall thickness, and the product of relative permeability and wall thickness can be determined accurately through the inverse problem with time-domain induced voltage. In the practical testing, supposing the conductivity of the ferromagnetic plate under test is a fixed value, and then the relative variation of wall thickness between two testing points can be calculated via the ratio of the corresponding inversion results of the product of conductivity and wall thickness. Finally, this method for wall thickness measurement is verified by the experiment results of a carbon steel plate.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50807001)
文摘The electromagnetic concentrative coils are indispensable in the functional magnetic stimulation and have potential applications in nondestructive testing. In this paper, we propose a figure-8-shaped coil being composed of two arbitrary oblique elliptical coils, which can change the electromagnetic concentrative region and the magnitude of eddy current density by changing the elliptical shape and/or spread angle between two elliptical coils. Pulsed current is usually the excitation source in the functional magnetic stimulation, so in this paper we derive the analytical solutions of transient pulsed eddy current field in the time domain due to the elliptical concentrative coil placed in an arbitrary position over a half-infinite plane conductor by making use of the scale-transformation, the Laplace transform and the Fourier transform are used in our derivation. Calculation results of field distributions produced by the figure-8-shaped elliptical coil show some behaviours as follows: 1) the eddy currents are focused on the conductor under the geometric symmetric centre of figure-8-shaped coil; 2) the greater the scale factor of ellipse is, the higher the eddy current density is and the wider the concentrative area of eddy current along y axis is; 3) the maximum magnitude of eddy current density increases with the increase of spread angle. When spread angle is 180°, there are two additional reverse concentrative areas on both sides of x axis.
基金supported by National Natural Science Foundation of China under Grant No. 51107053, 61501483 and 11402264Key Laboratory of Nondestructive Testing (Nanchang Hangkong University) ,Ministry of Education under Grant No ZD201629001+1 种基金National Key Research and Development Program of China (2016YFF0203400)Postgraduate Research & Practice Innovation Program of Jiangsu Provence under Grant No SJCX17_0487
文摘Crack of conductive component is one of the biggest threats to daily production. In order to detect the crack on conductive component,the pulsed eddy current thermography models were built according to different materials with the cracks based on finite element method(FEM) simulation. The influence of the induction heating temperature distribution with the different defect depths were simulated for the carbon fiber reinforced plastic(CFRP) materials and general metal materials. The grey value of image sequence was extracted to analyze its relationship with the depth of crack. Simulative and experimental results show that in the carbon fiber reinforced composite materials,the bigger depth of the crack is,the larger temperature rise of the crack during the heating phase is; and the bigger depth of the crack is,the faster the cooling rate of the crack during the cooling phase is. In general metal materials,the smaller depth of the crack is,the lager temperature rise of the crack during the heating phase is; and the smaller depth of the crack is,the faster the cooling rate of crack during the cooling phase is.
基金Supported by Malaysia’s Ministry of Higher Education(Grant No.FRGS16-059-0558)
文摘Existing eddy current non-destructive testing(NDT) techniques generally do not consider the inclination angle of inclined cracks, which potentially harms a larger region of a tested structure. This work proposes the use of 2 D scan images generated by using pulsed eddy current(PEC) non-destructive testing(NDT) technique in the quantification of the inclination and depth of inclined cracks. The image-based feature extraction technique e ectively identifies the crack axis, which consequently enables extraction of features from the extracted linear scans. The technique extracts linear scans from the images to allow the extraction of three novel image-based features, namely the length of extracted linear scans(LLS), the linear scan skewness(LSS), and the highest value on linear scan(LSmax). The correlation of the three features to surface crack inclination angles and depths were analysed and found to be highly dependent on the crack depths, while only LLS and LSS are correlated to the crack inclination angles.
基金the National Natural Science Foundation of China(Nos.51775137 and 51635005)。
文摘The continuous eddy current pulse treatment(ECPT)combined with heat treatment was employed to heal the microcracks in spin formed Mg alloy tubes and improve their mechanical properties in this study.The results show that all the microcracks in different tube specimens were almost healed after different continuous ECPT schemes up to 15 cycles.The schemes with less cooling intervals exhibited better healing effect and increased the strength and elongation of Mg alloy tubes more obviously.After aging treatment,the strength improvement of the specimens with ECPT was more remarkable than that of the specimens without ECPT,and the elongation decrease of the specimens with ECPT was less evident than that of specimens without ECPT due to the segregation of RE elements on the crack surface.Besides,after solution treatment,the strength reduction and ductility improvement of the specimens with ECPT were more pronounced than that of the specimens without ECPT owing to the notable decrease of dislocation density of the specimens with ECPT.Both narrowed cracks induced by ECPT and the segregation of precipitates in the vicinity of microcrack surface during aging treatment contributed to the maximum strength in the as-spun specimens with ECPT followed by aging treatment.
文摘[目的]核电厂汽水管线一般在管道外壁加装保温层,从而提高换热效率。目前对于铁磁性管道的检测手段主要为常规超声及超声导波,检测前需要将管道外壁保温层拆除,导致检测工期延长,人力成本增加,无法达到核电厂高质量发展的要求。核电厂脉冲涡流技术的应用可以省去保温层的拆装,实现不停机在线筛查。检测线圈的放置方式对缺陷的检出能力是脉冲涡流技术重要指标。[方法]文章利用ANSYS中的Maxwell模块进行管件建模及仿真,分别设计同轴式与垂直式检测线圈,保持提离距离、材料一致及其他条件一致下,模拟脉冲涡流对平底缺陷的检测能力。选取核电厂样管进行同轴式与垂直式脉冲涡流测试,将脉冲涡流(Pulsed Eddy Current Testing,PECT)测试结果与超声测厚进行复核,对比两种线圈放置方式对脉冲涡流检测的影响。[结果]研究表明:垂直式线圈相对于同轴式线圈对缺陷检出效果更佳。[结论]核电厂脉冲涡流技术的应用对脉冲涡流技术在核电领域实施具有重要意义。