The integration of photovoltaic,energy storage,direct current,and flexible load(PEDF)technologies in building power systems is an importantmeans to address the energy crisis and promote the development of green buildi...The integration of photovoltaic,energy storage,direct current,and flexible load(PEDF)technologies in building power systems is an importantmeans to address the energy crisis and promote the development of green buildings.The friendly interaction between the PEDF systems and the power grid can promote the utilization of renewable energy and enhance the stability of the power grid.For this purpose,this work introduces a framework of multiple incentive mechanisms for a PEDF park,a building energy system that implements PEDF technologies.The incentive mechanisms proposed in this paper include both economic and noneconomic aspects,which is the most significant innovation of this paper.By modeling the relationship between a PEDF park and the power grid into a Stackelberg game,we demonstrate the effectiveness of these incentive measures in promoting the friendly interaction between the two entities.In this game model,the power grid determines on the prices of electricity trading and incentive subsidy,aiming to maximize its revenue while reducing the peak load of the PEDF park.On the other hand,the PEDF park make its dispatch plan according to the prices established by the grid,in order to reduce electricity consumption expense,improve electricity utility,and enhance the penetration rate of renewable energy.The results show that the proposed incentive mechanisms for the PEDF park can help to optimize energy consumption and promote sustainable energy practices.展开更多
In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and ba...In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and balancing a large number of loads nearby.However,under the background of a large-scale DPV grid-connected to the county distribution network,an effective analysis method is needed to analyze its impact on the voltage of the distribution network in the early development stage of DPV.Therefore,a DPV orderly grid-connected method based on photovoltaics grid-connected order degree(PGOD)is proposed.This method aims to orderly analyze the change of voltage in the distribution network when large-scale DPV will be connected.Firstly,based on the voltagemagnitude sensitivity(VMS)index of the photovoltaics permitted grid-connected node and the acceptance of grid-connected node(AoGCN)index of other nodes in the network,thePGODindex is constructed to determine the photovoltaics permitted grid-connected node of the current photovoltaics grid-connected state network.Secondly,a photovoltaics orderly grid-connected model with a continuous updating state is constructed to obtain an orderly DPV grid-connected order.The simulation results illustrate that the photovoltaics grid-connected order determined by this method based on PGOD can effectively analyze the voltage impact of large-scale photovoltaics grid-connected,and explore the internal factors and characteristics of the impact.展开更多
With the rapid development of emerging photovoltaics technology in recent years,the application of building-integrated photovoltaics(BIPVs)has attracted the research interest of photovoltaic communities.To meet the pr...With the rapid development of emerging photovoltaics technology in recent years,the application of building-integrated photovoltaics(BIPVs)has attracted the research interest of photovoltaic communities.To meet the practical application requirements of BIPVs,in addition to the evaluation indicator of power conversion efficiency(PCE),other key performance indicators such as heat-insulating ability,average visible light transmittance(AVT),color properties,and integrability are equally important.The traditional Si-based photovoltaic technology is typically limited by its opaque properties for application scenarios where transparency is required.The emerging PV technologies,such as organic and perovskite photovoltaics are promising candidates for BIPV applications,owing to their advantages such as high PCE,high AVT,and tunable properties.At present,the PCE of semitransparent perovskite solar cells(ST-PSCs)has attained 14%with AVT of 22–25%;for semitransparent organic solar cells(ST-OSCs),the PCE reached 13%with AVT of almost 40%.In this review article,we summarize recent advances in material selection,optical engineering,and device architecture design for high-performance semitransparent emerging PV devices,and discuss the application of optical modeling,as well as the challenges of commercializing these semitransparent solar cells for building-integrated applications.展开更多
Substantially glazed facades are extensively used in contemporary high-rise buildings to achieve attractive architectural aesthetics.Inherent conflicts exist among architectural aesthetics,building energy consumption,...Substantially glazed facades are extensively used in contemporary high-rise buildings to achieve attractive architectural aesthetics.Inherent conflicts exist among architectural aesthetics,building energy consumption,and solar energy harvesting for glazed facades.In this study,we addressed these conflicts by introducing a new dynamic and vertical photovoltaic integrated building envelope(dvPVBE)that offers extraordinary flexibility with weather-responsive slat angles and blind positions,superior architectural aesthetics,and notable energy-saving potential.Three hierarchical control strategies were proposed for different scenarios of the dvPVBE:power generation priority(PGP),natural daylight priority(NDP),and energy-saving priority(ESP).Moreover,the PGP and ESP strategies were further analyzed in the simulation of a dvPVBE.An office room integrated with a dvPVBE was modeled using EnergyPlus.The influence of the dvPVBE in improving the building energy efficiency and corresponding optimal slat angles was investigated under the PGP and ESP control strategies.The results indicate that the application of dvPVBEs in Beijing can provide up to 131%of the annual energy demand of office rooms and significantly increase the annual net energy output by at least 226%compared with static photovoltaic(PV)blinds.The concept of this novel dvPVBE offers a viable approach by which the thermal load,daylight penetration,and energy generation can be effectively regulated.展开更多
As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and...As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility.展开更多
Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific powe...Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific power and flexibility.In recent years,substantial works have focused on 2D photovoltaic devices,and great progress has been achieved.Here,we present the review of recent advances in 2D photovoltaic devices,focusing on 2D-material-based Schottky junctions,homojunctions,2D−2D heterojunctions,2D−3D heterojunctions,and bulk photovoltaic effect devices.Furthermore,advanced strategies for improving the photovoltaic performances are demonstrated in detail.Finally,conclusions and outlooks are delivered,providing a guideline for the further development of 2D photovoltaic devices.展开更多
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ...Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.展开更多
Renewable energies are highly dependent on local weather conditions, with photovoltaic energy being particularly affected by intermittent clouds. Anticipating the impact of cloud shadows on power plants is crucial, as...Renewable energies are highly dependent on local weather conditions, with photovoltaic energy being particularly affected by intermittent clouds. Anticipating the impact of cloud shadows on power plants is crucial, as clouds can cause partial shading, excessive irradiation, and operational issues. This study focuses on analyzing cloud tracking methods for short-term forecasts, aiming to mitigate such impacts. We conducted a systematic literature review, highlighting the most significant articles on cloud tracking from ground-based observations. We explore both traditional image processing techniques and advances in deep learning models. Additionally, we discuss current challenges and future research directions in this rapidly evolving field, aiming to provide a comprehensive overview of the state of the art and identify opportunities for significant advancements in the next generation of cloud tracking systems based on computer vision and deep learning.展开更多
Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at th...Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at the electron donor-acceptor interface are investigated.The film morphology exhibits notable variations,significantly depending on the layer to which 1,8-diiodooctane (DIO) was applied.Grazing incidence wide-angle X-ray scattering analysis reveals distinctly separated donor/acceptor phases and vertical crystallinity details in SD films.Time-of-flight secondary ion mass spectrometry analysis is employed to obtain component distributions in diverse vertical phase structures of SD films depending on additive control.In addition,nanosecond transient absorption spectroscopy shows that DIO control significantly affects the dynamics of separated charges in SD films.In SD OPVs,DIO appears to act through distinct mechanisms with minimal restriction,depending on the applied layer.This study emphasizes the significance of morphological optimization in improving device performance and underscores the importance of independent additive control in the advancement of OPV technology.展开更多
Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on ta...Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on tailoring the donor/acceptor morphology,however,exhibiting limited applicability.Therefore,it is timely to develop an easy method to enhance thermal stability without having to develop new donor/acceptor materials or donor–acceptor compatibilizers,or by introducing another third component.Herein,a unique approach is presented,based on constructing a polymer fiber rigid network with a high glass transition temperature(T_(g))to impede the movement of acceptor and donor molecules,to immobilize the active layer morphology,and thereby to improve thermal stability.A high-T_(g) one-dimensional aramid nanofiber(ANF)is utilized for network construction.Inverted OPVs with ANF network yield superior thermal stability compared to the ANF-free counterpart.The ANF network-incorporated active layer demonstrates significantly more stable morphology than the ANF-free counterpart,thereby leaving fundamental processes such as charge separation,transport,and collection,determining the device efficiency,largely unaltered.This strategy is also successfully applied to other photovoltaic systems.The strategy of incorporating a polymer fiber rigid network with high T_(g) offers a distinct perspective addressing the challenge of thermal instability with simplicity and universality.展开更多
Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter....Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.Many phosphors with high light yield and good environmental stability have been developed,but the performance of radio-photovoltaic cells remains far behind expectations in terms of power density and power conversion efficiency,because of the poor photoelectric conversion efficiency of traditional photovoltaic converters under low-light conditions.This paper reports an radio-photovoltaic cell based on an intrinsically stable formamidinium-cesium perovskite photovoltaic converter exhibiting a wide light wavelength response from 300 to 800 nm,high open-circuit voltage(V_(oc)),and remarkable efficiency at low-light intensity.When a He ions accelerator is adopted as a mimickedαradioisotope source with an equivalent activity of 0.83 mCi cm^(-2),the formamidinium-cesium perovskite radio-photovoltaic cell achieves a V_(oc)of 0.498 V,a short-circuit current(J_(sc))of 423.94 nA cm^(-2),and a remarkable power conversion efficiency of 0.886%,which is 6.6 times that of the Si reference radio-photovoltaic cell,as well as the highest among all radio-photovoltaic cells reported so far.This work provides a theoretical basis for enhancing the performance of radio-photovoltaic cells.展开更多
The United Nations’Sustainable Development Goals(SDGs)highlight the importance of affordable and clean energy sources.Solar energy is a perfect example,being both renewable and abundant.Its popularity shows no signs ...The United Nations’Sustainable Development Goals(SDGs)highlight the importance of affordable and clean energy sources.Solar energy is a perfect example,being both renewable and abundant.Its popularity shows no signs of slowing down,with solar photovoltaic(PV)panels being the primary technology for converting sunlight into electricity.Advancements are continuously being made to ensure cost-effectiveness,high-performing cells,extended lifespans,and minimal maintenance requirements.This study focuses on identifying suitable locations for implementing solar PVsystems at theUniversityMalaysia PahangAl SultanAbdullah(UMPSA),Pekan campus including buildings,water bodies,and forest areas.A combined technical and economic analysis is conducted using Helioscope for simulations and the Photovoltaic Geographic Information System(PVGIS)for economic considerations.Helioscope simulation examine case studies for PV installations in forested areas,lakes,and buildings.This approach provides comprehensive estimations of solar photovoltaic potential,annual cost savings,electricity costs,and greenhouse gas emission reductions.Based on land coverage percentages,Floatovoltaics have a large solar PV capacity of 32.3 Megawatts(MW);forest-based photovoltaics(Forestvoltaics)achieve maximum yearly savings of RM 37,268,550;and Building Applied Photovoltaics(BAPV)have the lowest CO2 emissions and net carbon dioxide reduction compared to other plant sizes.It also clarifies the purpose of using both software tools to achieve a comprehensive understanding of both technical and economic aspects.展开更多
Accurate short-termphotovoltaic(PV)power prediction helps to improve the economic efficiency of power stations and is of great significance to the arrangement of grid scheduling plans.In order to improve the accuracy ...Accurate short-termphotovoltaic(PV)power prediction helps to improve the economic efficiency of power stations and is of great significance to the arrangement of grid scheduling plans.In order to improve the accuracy of PV power prediction further,this paper proposes a data cleaning method combining density clustering and support vector machine.It constructs a short-termPVpower predictionmodel based on particle swarmoptimization(PSO)optimized Long Short-Term Memory(LSTM)network.Firstly,the input features are determined using Pearson’s correlation coefficient.The feature information is clustered using density-based spatial clustering of applications withnoise(DBSCAN),and then,the data in each cluster is cleanedusing support vectormachines(SVM).Secondly,the PSO is used to optimize the hyperparameters of the LSTM network to obtain the optimal network structure.Finally,different power prediction models are established,and the PV power generation prediction results are obtained.The results show that the data methods used are effective and that the PSO-LSTM power prediction model based on DBSCAN-SVM data cleaning outperforms existing typical methods,especially under non-sunny days,and that the model effectively improves the accuracy of short-term PV power prediction.展开更多
Semitransparent organic photovoltaics(STOPVs)have gained wide attention owing to their promising applications in building-integrated photovoltaics,agrivoltaics,and floating photovoltaics.Organic semiconductors with hi...Semitransparent organic photovoltaics(STOPVs)have gained wide attention owing to their promising applications in building-integrated photovoltaics,agrivoltaics,and floating photovoltaics.Organic semiconductors with high charge carrier mobility usually have planar and conjugated structures,thereby showing strong absorption in visible region.In this work,a new concept of incorporating transparent inorganic semiconductors is proposed for high-performance STOPVs.Copper(I)thiocyanate(CuSCN)is a visible-transparent inorganic semiconductor with an ionization potential of 5.45 eV and high hole mobility.The transparency of CuSCN benefits high average visible transmittance(AVT)of STOPVs.The energy levels of CuSCN as donor match those of near-infrared small molecule acceptor BTP-eC9,and the formed heterojunction exhibits an ability of exciton dissociation.High mobility of CuSCN contributes to a more favorable charge transport channel and suppresses charge recombination.The control STOPVs based on PM6/BTP-eC9 exhibit an AVT of 19.0%with a power conversion efficiency(PCE)of 12.7%.Partial replacement of PM6 with CuSCN leads to a 63%increase in transmittance,resulting in a higher AVT of 30.9%and a comparable PCE of 10.8%.展开更多
Electrical energy is essential for modern society to sustain economic growths.The soaring demand for the electrical energy,together with an awareness of the environmental impact of fossil fuels,has been driving a shif...Electrical energy is essential for modern society to sustain economic growths.The soaring demand for the electrical energy,together with an awareness of the environmental impact of fossil fuels,has been driving a shift towards the utilization of solar energy.However,traditional solar energy solutions often require extensive spaces for a panel installation,limiting their practicality in a dense urban environment.To overcome the spatial constraint,researchers have developed transparent photovoltaics(TPV),enabling windows and facades in vehicles and buildings to generate electric energy.Current TPV advancements are focused on improving both transparency and power output to rival commercially available silicon solar panels.In this review,we first briefly introduce wavelength-and non-wavelengthselective strategies to achieve transparency.Figures of merit and theoretical limits of TPVs are discussed to comprehensively understand the status of current TPV technology.Then we highlight recent progress in different types of TPVs,with a particular focus on solution-processed thin-film photovoltaics(PVs),including colloidal quantum dot PVs,metal halide perovskite PVs and organic PVs.The applications of TPVs are also reviewed,with emphasis on agrivoltaics,smart windows and facades.Finally,current challenges and future opportunities in TPV research are pointed out.展开更多
The system performance of grid-connected photovoltaic(PV)has a serious impact on the grid stability.To improve the control performance and shorten the convergence time,a predefined-time controller based on backsteppin...The system performance of grid-connected photovoltaic(PV)has a serious impact on the grid stability.To improve the control performance and shorten the convergence time,a predefined-time controller based on backstepping technology and dynamic surface control is formulated for the inverter in the grid-connected photovoltaic.The time-varying tuning functions are introduced into state-tracking errors to realize the predefined-time control effect.To address the“computational explosion problem”in the design process of backstepping control,dynamic surface control is adopted to avoid the analytical calculations of virtual control.The disturbances of the PV system are estimated and compensated by adaptive laws.The control parameters are chosen and the global stability of the closed-loop is ensured by Lyapunov conditions.Simulation results confirm the effectiveness of the proposed controller and ensure the predefined time control in the photovoltaic inverter.展开更多
In this paper,a detailed model of a photovoltaic(PV)panel is used to study the accumulation of dust on solar panels.The presence of dust diminishes the incident light intensity penetrating the panel’s cover glass,as ...In this paper,a detailed model of a photovoltaic(PV)panel is used to study the accumulation of dust on solar panels.The presence of dust diminishes the incident light intensity penetrating the panel’s cover glass,as it increases the reflection of light by particles.This phenomenon,commonly known as the“soiling effect”,presents a significant challenge to PV systems on a global scale.Two basic models of the equivalent circuits of a solar cell can be found,namely the single-diode model and the two-diode models.The limitation of efficiency data in manufacturers’datasheets has encouraged us to develop an equivalent electrical model that is efficient under dust conditions,integrated with optical transmittance considerations to investigate the soiling effect.The proposed approach is based on the use of experimental current-voltage(I-V)characteristics with simulated data using MATLAB/Simulink.Our research outcomes underscores the feasibility of accurately quantifying the reduction in energy production resulting from soiling by assessing the optical transmittance of accumulated dust on the surface of PV glass.展开更多
Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-d...Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-dominant crystalline silicon(c-Si)is particularly attractive;simple estimates based on the bandgap matching indicate that the efficiency limit in such tandem device is as high as 46%.However,state-of-the-art perovskite/c-Si TSCs only achieve an efficiency of~32.5%,implying significant challenges and also rich opportunities.In this review,we start with the operating mechanism and efficiency limit of TSCs,followed by systematical discussions on wide-bandgap perovskite front cells,interface selective contacts,and electrical interconnection layer,as well as photon management for highly efficient perovskite/c-Si TSCs.We highlight the challenges in this field and provide our understanding of future research directions toward highly efficient and stable large-scale wide-bandgap perovskite front cells for the commercialization of perovskite/c-Si TSCs.展开更多
Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations...Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations in the profitability of ESSs in the electricity market are yet to be fully understood.This study introduces a dual-timescale dynamics model that integrates a spot market clearing(SMC)model into a system dynamics(SD)model to investigate the profit-aware capacity growth of ESSs and compares the profitability of independent energy storage systems(IESSs)with that of an ESS integrated within a PV(PV-ESS).Furthermore,this study aims to ascertain the optimal allocation of the PV-ESS.First,SD and SMC models were set up.Second,the SMC model simulated on an hourly timescale was incorporated into the SD model as a subsystem,a dual-timescale model was constructed.Finally,a development simulation and profitability analysis was conducted from 2022 to 2040 to reveal the dynamic optimal range of PV-ESS allocation.Additionally,negative electricity prices were considered during clearing processes.The simulation results revealed differences in profitability and capacity growth between IESS and PV-ESS,helping grid investors and policymakers to determine the boundaries of ESSs and dynamic optimal allocation of PV-ESSs.展开更多
The proper bandgap and exceptional photostability enable CsPbI_(3) as a potential candidate for indoor photovoltaics(IPVs),but indoor power conversion efficiency(PCE) is impeded by serious nonradiative recombination s...The proper bandgap and exceptional photostability enable CsPbI_(3) as a potential candidate for indoor photovoltaics(IPVs),but indoor power conversion efficiency(PCE) is impeded by serious nonradiative recombination stemming from challenges in incomplete DMAPbI_(3) conversion and lattice structure distortion.Here,the coplanar symmetric structu re of hexyl sulfide(HS) is employed to functionalize the CsPbI_(3) layer for fabricating highly efficient IPVs.The hydrogen bond between HS and DMAI promotes the conversion of DMAPbI_(3) to CsPbI_(3),while the copianar symmetric structure enhances crystalline order.Simultaneously,surface sulfidation during HS-induced growth results in the in situ formation of PbS,spontaneously creating a CsPbI_(3) N-P homojunction to enhance band alignment and carrier mobility.As a result,the CsPbI_(3)&HS devices achieve an impressive indoor PCE of 39.90%(P_(in):334.6 μW cm^(-2),P_(out):133.5 μW cm^(-2)) under LED@2968 K,1062 lux,and maintain over 90% initial PCE for 800 h at ^(3)0% air ambient humidity.展开更多
基金supported by Guangxi Power Grid Science and Technology Project(GXKJXM20222069).
文摘The integration of photovoltaic,energy storage,direct current,and flexible load(PEDF)technologies in building power systems is an importantmeans to address the energy crisis and promote the development of green buildings.The friendly interaction between the PEDF systems and the power grid can promote the utilization of renewable energy and enhance the stability of the power grid.For this purpose,this work introduces a framework of multiple incentive mechanisms for a PEDF park,a building energy system that implements PEDF technologies.The incentive mechanisms proposed in this paper include both economic and noneconomic aspects,which is the most significant innovation of this paper.By modeling the relationship between a PEDF park and the power grid into a Stackelberg game,we demonstrate the effectiveness of these incentive measures in promoting the friendly interaction between the two entities.In this game model,the power grid determines on the prices of electricity trading and incentive subsidy,aiming to maximize its revenue while reducing the peak load of the PEDF park.On the other hand,the PEDF park make its dispatch plan according to the prices established by the grid,in order to reduce electricity consumption expense,improve electricity utility,and enhance the penetration rate of renewable energy.The results show that the proposed incentive mechanisms for the PEDF park can help to optimize energy consumption and promote sustainable energy practices.
基金supported by North China Electric Power Research Institute’s Self-Funded Science and Technology Project“Research on Distributed Energy Storage Optimal Configuration and Operation Control Technology for Photovoltaic Promotion in the Entire County”(KJZ2022049).
文摘In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and balancing a large number of loads nearby.However,under the background of a large-scale DPV grid-connected to the county distribution network,an effective analysis method is needed to analyze its impact on the voltage of the distribution network in the early development stage of DPV.Therefore,a DPV orderly grid-connected method based on photovoltaics grid-connected order degree(PGOD)is proposed.This method aims to orderly analyze the change of voltage in the distribution network when large-scale DPV will be connected.Firstly,based on the voltagemagnitude sensitivity(VMS)index of the photovoltaics permitted grid-connected node and the acceptance of grid-connected node(AoGCN)index of other nodes in the network,thePGODindex is constructed to determine the photovoltaics permitted grid-connected node of the current photovoltaics grid-connected state network.Secondly,a photovoltaics orderly grid-connected model with a continuous updating state is constructed to obtain an orderly DPV grid-connected order.The simulation results illustrate that the photovoltaics grid-connected order determined by this method based on PGOD can effectively analyze the voltage impact of large-scale photovoltaics grid-connected,and explore the internal factors and characteristics of the impact.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.2022ZYGXZR099)Pazhou Lab(No.PZL2022KF0010).
文摘With the rapid development of emerging photovoltaics technology in recent years,the application of building-integrated photovoltaics(BIPVs)has attracted the research interest of photovoltaic communities.To meet the practical application requirements of BIPVs,in addition to the evaluation indicator of power conversion efficiency(PCE),other key performance indicators such as heat-insulating ability,average visible light transmittance(AVT),color properties,and integrability are equally important.The traditional Si-based photovoltaic technology is typically limited by its opaque properties for application scenarios where transparency is required.The emerging PV technologies,such as organic and perovskite photovoltaics are promising candidates for BIPV applications,owing to their advantages such as high PCE,high AVT,and tunable properties.At present,the PCE of semitransparent perovskite solar cells(ST-PSCs)has attained 14%with AVT of 22–25%;for semitransparent organic solar cells(ST-OSCs),the PCE reached 13%with AVT of almost 40%.In this review article,we summarize recent advances in material selection,optical engineering,and device architecture design for high-performance semitransparent emerging PV devices,and discuss the application of optical modeling,as well as the challenges of commercializing these semitransparent solar cells for building-integrated applications.
基金supported by the National Natural Science Foundation of China(52078269 and 52325801).
文摘Substantially glazed facades are extensively used in contemporary high-rise buildings to achieve attractive architectural aesthetics.Inherent conflicts exist among architectural aesthetics,building energy consumption,and solar energy harvesting for glazed facades.In this study,we addressed these conflicts by introducing a new dynamic and vertical photovoltaic integrated building envelope(dvPVBE)that offers extraordinary flexibility with weather-responsive slat angles and blind positions,superior architectural aesthetics,and notable energy-saving potential.Three hierarchical control strategies were proposed for different scenarios of the dvPVBE:power generation priority(PGP),natural daylight priority(NDP),and energy-saving priority(ESP).Moreover,the PGP and ESP strategies were further analyzed in the simulation of a dvPVBE.An office room integrated with a dvPVBE was modeled using EnergyPlus.The influence of the dvPVBE in improving the building energy efficiency and corresponding optimal slat angles was investigated under the PGP and ESP control strategies.The results indicate that the application of dvPVBEs in Beijing can provide up to 131%of the annual energy demand of office rooms and significantly increase the annual net energy output by at least 226%compared with static photovoltaic(PV)blinds.The concept of this novel dvPVBE offers a viable approach by which the thermal load,daylight penetration,and energy generation can be effectively regulated.
基金supported by the National Natural Science Foundation of China(62305261,62305262)the Natural Science Foundation of Shaanxi Province(2024JC-YBMS-021,2024JC-YBMS-788,2023-JC-YB-065,2023-JC-QN-0693,2022JQ-652)+1 种基金the Xi’an Science and Technology Bureau of University Service Enterprise Project(23GXFW0043)the Cross disciplinary Research and Cultivation Project of Xi’an University of Architecture and Technology(2023JCPY-17)。
文摘As interest in double perovskites is growing,especially in applications like photovoltaic devices,understanding their mechanical properties is vital for device durability.Despite extensive exploration of structure and optical properties,research on mechanical aspects is limited.This article builds a vacancyordered double perovskite model,employing first-principles calculations to analyze mechanical,bonding,electronic,and optical properties.Results show Cs_(2)Hfl_(6),Cs_(2)SnBr_(6),Cs_(2)SnI_(6),and Cs_(2)PtBr_(6)have Young's moduli below 13 GPa,indicating flexibility.Geometric parameters explain flexibility variations with the changes of B and X site composition.Bonding characteristic exploration reveals the influence of B and X site electronegativity on mechanical strength.Cs_(2)SnBr_(6)and Cs_(2)PtBr_(6)are suitable for solar cells,while Cs_(2)HfI_(6)and Cs_(2)TiCl_(6)show potential for semi-transparent solar cells.Optical property calculations highlight the high light absorption coefficients of up to 3.5×10^(5) cm^(-1)for Cs_(2)HfI_(6)and Cs_(2)TiCl_(6).Solar cell simulation shows Cs_(2)PtBr_(6)achieves 22.4%of conversion effciency.Cs_(2)ZrCl_(6)holds promise for ionizing radiation detection with its 3.68 eV bandgap and high absorption coefficient.Vacancy-ordered double perovskites offer superior flexibility,providing valuable insights for designing stable and flexible devices.This understanding enhances the development of functional devices based on these perovskites,especially for applications requiring high stability and flexibility.
基金supported by the National Natural Science Foundation of China(52322210,52172144,22375069,21825103,and U21A2069)National Key R&D Program of China(2021YFA1200501)+1 种基金Shenzhen Science and Technology Program(JCYJ20220818102215033,JCYJ20200109105422876)the Innovation Project of Optics Valley Laboratory(OVL2023PY007).
文摘Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific power and flexibility.In recent years,substantial works have focused on 2D photovoltaic devices,and great progress has been achieved.Here,we present the review of recent advances in 2D photovoltaic devices,focusing on 2D-material-based Schottky junctions,homojunctions,2D−2D heterojunctions,2D−3D heterojunctions,and bulk photovoltaic effect devices.Furthermore,advanced strategies for improving the photovoltaic performances are demonstrated in detail.Finally,conclusions and outlooks are delivered,providing a guideline for the further development of 2D photovoltaic devices.
文摘Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.
文摘Renewable energies are highly dependent on local weather conditions, with photovoltaic energy being particularly affected by intermittent clouds. Anticipating the impact of cloud shadows on power plants is crucial, as clouds can cause partial shading, excessive irradiation, and operational issues. This study focuses on analyzing cloud tracking methods for short-term forecasts, aiming to mitigate such impacts. We conducted a systematic literature review, highlighting the most significant articles on cloud tracking from ground-based observations. We explore both traditional image processing techniques and advances in deep learning models. Additionally, we discuss current challenges and future research directions in this rapidly evolving field, aiming to provide a comprehensive overview of the state of the art and identify opportunities for significant advancements in the next generation of cloud tracking systems based on computer vision and deep learning.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS-2023-00213920,NRF-2021R1A4A1031761).
文摘Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at the electron donor-acceptor interface are investigated.The film morphology exhibits notable variations,significantly depending on the layer to which 1,8-diiodooctane (DIO) was applied.Grazing incidence wide-angle X-ray scattering analysis reveals distinctly separated donor/acceptor phases and vertical crystallinity details in SD films.Time-of-flight secondary ion mass spectrometry analysis is employed to obtain component distributions in diverse vertical phase structures of SD films depending on additive control.In addition,nanosecond transient absorption spectroscopy shows that DIO control significantly affects the dynamics of separated charges in SD films.In SD OPVs,DIO appears to act through distinct mechanisms with minimal restriction,depending on the applied layer.This study emphasizes the significance of morphological optimization in improving device performance and underscores the importance of independent additive control in the advancement of OPV technology.
基金financially supported by the Sichuan Science and Technology Program(Grant Nos.2023YFH0087,2023YFH0085,2023YFH0086,and 2023NSFSC0990)State Key Laboratory of Polymer Materials Engineering(Grant Nos.sklpme2022-3-02 and sklpme2023-2-11)+1 种基金Tibet Foreign Experts Program(Grant No.2022wz002)supported by the King Abdullah University of Science and Technology(KAUST)Office of Research Administration(ORA)under Award Nos.OSR-CARF/CCF-3079 and OSR-2021-CRG10-4701.
文摘Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on tailoring the donor/acceptor morphology,however,exhibiting limited applicability.Therefore,it is timely to develop an easy method to enhance thermal stability without having to develop new donor/acceptor materials or donor–acceptor compatibilizers,or by introducing another third component.Herein,a unique approach is presented,based on constructing a polymer fiber rigid network with a high glass transition temperature(T_(g))to impede the movement of acceptor and donor molecules,to immobilize the active layer morphology,and thereby to improve thermal stability.A high-T_(g) one-dimensional aramid nanofiber(ANF)is utilized for network construction.Inverted OPVs with ANF network yield superior thermal stability compared to the ANF-free counterpart.The ANF network-incorporated active layer demonstrates significantly more stable morphology than the ANF-free counterpart,thereby leaving fundamental processes such as charge separation,transport,and collection,determining the device efficiency,largely unaltered.This strategy is also successfully applied to other photovoltaic systems.The strategy of incorporating a polymer fiber rigid network with high T_(g) offers a distinct perspective addressing the challenge of thermal instability with simplicity and universality.
基金the financial support from the National Natural Science Foundation of China(grant numbers 11922507,12050005,52002140)Fundamental Research Funds for the Central Universities(2020kfyXJJS008)+1 种基金Major State Basic Research Development Program of China(2021YFB3201000)Young Elite Scientists Sponsorship Program by CAST
文摘Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.Many phosphors with high light yield and good environmental stability have been developed,but the performance of radio-photovoltaic cells remains far behind expectations in terms of power density and power conversion efficiency,because of the poor photoelectric conversion efficiency of traditional photovoltaic converters under low-light conditions.This paper reports an radio-photovoltaic cell based on an intrinsically stable formamidinium-cesium perovskite photovoltaic converter exhibiting a wide light wavelength response from 300 to 800 nm,high open-circuit voltage(V_(oc)),and remarkable efficiency at low-light intensity.When a He ions accelerator is adopted as a mimickedαradioisotope source with an equivalent activity of 0.83 mCi cm^(-2),the formamidinium-cesium perovskite radio-photovoltaic cell achieves a V_(oc)of 0.498 V,a short-circuit current(J_(sc))of 423.94 nA cm^(-2),and a remarkable power conversion efficiency of 0.886%,which is 6.6 times that of the Si reference radio-photovoltaic cell,as well as the highest among all radio-photovoltaic cells reported so far.This work provides a theoretical basis for enhancing the performance of radio-photovoltaic cells.
基金the financial support provided by Universiti Malaysia Pahang Al Sultan Abdullah(www.umpsa.edu.my,accessed 10 April 2024)through the Doctoral Research Scheme(DRS)toMr.Rittick Maity and the Postgraduate Research Scheme(PGRS220390).
文摘The United Nations’Sustainable Development Goals(SDGs)highlight the importance of affordable and clean energy sources.Solar energy is a perfect example,being both renewable and abundant.Its popularity shows no signs of slowing down,with solar photovoltaic(PV)panels being the primary technology for converting sunlight into electricity.Advancements are continuously being made to ensure cost-effectiveness,high-performing cells,extended lifespans,and minimal maintenance requirements.This study focuses on identifying suitable locations for implementing solar PVsystems at theUniversityMalaysia PahangAl SultanAbdullah(UMPSA),Pekan campus including buildings,water bodies,and forest areas.A combined technical and economic analysis is conducted using Helioscope for simulations and the Photovoltaic Geographic Information System(PVGIS)for economic considerations.Helioscope simulation examine case studies for PV installations in forested areas,lakes,and buildings.This approach provides comprehensive estimations of solar photovoltaic potential,annual cost savings,electricity costs,and greenhouse gas emission reductions.Based on land coverage percentages,Floatovoltaics have a large solar PV capacity of 32.3 Megawatts(MW);forest-based photovoltaics(Forestvoltaics)achieve maximum yearly savings of RM 37,268,550;and Building Applied Photovoltaics(BAPV)have the lowest CO2 emissions and net carbon dioxide reduction compared to other plant sizes.It also clarifies the purpose of using both software tools to achieve a comprehensive understanding of both technical and economic aspects.
基金supported in part by the Inner Mongolia Autonomous Region Science and Technology Project Fund(2021GG0336)Inner Mongolia Natural Science Fund(2023ZD20).
文摘Accurate short-termphotovoltaic(PV)power prediction helps to improve the economic efficiency of power stations and is of great significance to the arrangement of grid scheduling plans.In order to improve the accuracy of PV power prediction further,this paper proposes a data cleaning method combining density clustering and support vector machine.It constructs a short-termPVpower predictionmodel based on particle swarmoptimization(PSO)optimized Long Short-Term Memory(LSTM)network.Firstly,the input features are determined using Pearson’s correlation coefficient.The feature information is clustered using density-based spatial clustering of applications withnoise(DBSCAN),and then,the data in each cluster is cleanedusing support vectormachines(SVM).Secondly,the PSO is used to optimize the hyperparameters of the LSTM network to obtain the optimal network structure.Finally,different power prediction models are established,and the PV power generation prediction results are obtained.The results show that the data methods used are effective and that the PSO-LSTM power prediction model based on DBSCAN-SVM data cleaning outperforms existing typical methods,especially under non-sunny days,and that the model effectively improves the accuracy of short-term PV power prediction.
基金financially supported by the Sichuan Science and Technology Program (2023YFH0086, 2023YFH0085, 2023YFH0087 and 2023NSFSC0990)the State Key Laboratory of Polymer Materials Engineering (sklpme2022-3-02 and sklpme2023-2-11)the Tibet Foreign Experts Program (2022wz002)
文摘Semitransparent organic photovoltaics(STOPVs)have gained wide attention owing to their promising applications in building-integrated photovoltaics,agrivoltaics,and floating photovoltaics.Organic semiconductors with high charge carrier mobility usually have planar and conjugated structures,thereby showing strong absorption in visible region.In this work,a new concept of incorporating transparent inorganic semiconductors is proposed for high-performance STOPVs.Copper(I)thiocyanate(CuSCN)is a visible-transparent inorganic semiconductor with an ionization potential of 5.45 eV and high hole mobility.The transparency of CuSCN benefits high average visible transmittance(AVT)of STOPVs.The energy levels of CuSCN as donor match those of near-infrared small molecule acceptor BTP-eC9,and the formed heterojunction exhibits an ability of exciton dissociation.High mobility of CuSCN contributes to a more favorable charge transport channel and suppresses charge recombination.The control STOPVs based on PM6/BTP-eC9 exhibit an AVT of 19.0%with a power conversion efficiency(PCE)of 12.7%.Partial replacement of PM6 with CuSCN leads to a 63%increase in transmittance,resulting in a higher AVT of 30.9%and a comparable PCE of 10.8%.
基金supported by the National Natural Science Foundation of China(Grant number W2432035)financial support from the EPSRC SWIMS(EP/V039717/1)+3 种基金Royal Society(RGS\R1\221009 and IEC\NSFC\211201)Leverhulme Trust(RPG-2022-263)Ser Cymru programme–Enhancing Competitiveness Equipment Awards 2022-23(MA/VG/2715/22-PN66)the financial support from Kingdom of Saudi Arabia Ministry of Higher Education.
文摘Electrical energy is essential for modern society to sustain economic growths.The soaring demand for the electrical energy,together with an awareness of the environmental impact of fossil fuels,has been driving a shift towards the utilization of solar energy.However,traditional solar energy solutions often require extensive spaces for a panel installation,limiting their practicality in a dense urban environment.To overcome the spatial constraint,researchers have developed transparent photovoltaics(TPV),enabling windows and facades in vehicles and buildings to generate electric energy.Current TPV advancements are focused on improving both transparency and power output to rival commercially available silicon solar panels.In this review,we first briefly introduce wavelength-and non-wavelengthselective strategies to achieve transparency.Figures of merit and theoretical limits of TPVs are discussed to comprehensively understand the status of current TPV technology.Then we highlight recent progress in different types of TPVs,with a particular focus on solution-processed thin-film photovoltaics(PVs),including colloidal quantum dot PVs,metal halide perovskite PVs and organic PVs.The applications of TPVs are also reviewed,with emphasis on agrivoltaics,smart windows and facades.Finally,current challenges and future opportunities in TPV research are pointed out.
基金supported by the State Grid Corporation of China Headquarters Science and Technology Project under Grant No.5400-202122573A-0-5-SF。
文摘The system performance of grid-connected photovoltaic(PV)has a serious impact on the grid stability.To improve the control performance and shorten the convergence time,a predefined-time controller based on backstepping technology and dynamic surface control is formulated for the inverter in the grid-connected photovoltaic.The time-varying tuning functions are introduced into state-tracking errors to realize the predefined-time control effect.To address the“computational explosion problem”in the design process of backstepping control,dynamic surface control is adopted to avoid the analytical calculations of virtual control.The disturbances of the PV system are estimated and compensated by adaptive laws.The control parameters are chosen and the global stability of the closed-loop is ensured by Lyapunov conditions.Simulation results confirm the effectiveness of the proposed controller and ensure the predefined time control in the photovoltaic inverter.
文摘In this paper,a detailed model of a photovoltaic(PV)panel is used to study the accumulation of dust on solar panels.The presence of dust diminishes the incident light intensity penetrating the panel’s cover glass,as it increases the reflection of light by particles.This phenomenon,commonly known as the“soiling effect”,presents a significant challenge to PV systems on a global scale.Two basic models of the equivalent circuits of a solar cell can be found,namely the single-diode model and the two-diode models.The limitation of efficiency data in manufacturers’datasheets has encouraged us to develop an equivalent electrical model that is efficient under dust conditions,integrated with optical transmittance considerations to investigate the soiling effect.The proposed approach is based on the use of experimental current-voltage(I-V)characteristics with simulated data using MATLAB/Simulink.Our research outcomes underscores the feasibility of accurately quantifying the reduction in energy production resulting from soiling by assessing the optical transmittance of accumulated dust on the surface of PV glass.
基金the talent project of ZJU-Hangzhou Global Scientific and Technological Innovation Center(No.02170000-K02013017)project of National Natural Science Foundation of China(No.61721005)
文摘Tunable bandgaps make halide perovskites promising candidates for developing tandem solar cells(TSCs),a strategy to break the radiative limit of 33.7%for single-junction solar cells.Combining perovskites with market-dominant crystalline silicon(c-Si)is particularly attractive;simple estimates based on the bandgap matching indicate that the efficiency limit in such tandem device is as high as 46%.However,state-of-the-art perovskite/c-Si TSCs only achieve an efficiency of~32.5%,implying significant challenges and also rich opportunities.In this review,we start with the operating mechanism and efficiency limit of TSCs,followed by systematical discussions on wide-bandgap perovskite front cells,interface selective contacts,and electrical interconnection layer,as well as photon management for highly efficient perovskite/c-Si TSCs.We highlight the challenges in this field and provide our understanding of future research directions toward highly efficient and stable large-scale wide-bandgap perovskite front cells for the commercialization of perovskite/c-Si TSCs.
基金supported by National Natural Science Foundation of China(U2066209)。
文摘Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations in the profitability of ESSs in the electricity market are yet to be fully understood.This study introduces a dual-timescale dynamics model that integrates a spot market clearing(SMC)model into a system dynamics(SD)model to investigate the profit-aware capacity growth of ESSs and compares the profitability of independent energy storage systems(IESSs)with that of an ESS integrated within a PV(PV-ESS).Furthermore,this study aims to ascertain the optimal allocation of the PV-ESS.First,SD and SMC models were set up.Second,the SMC model simulated on an hourly timescale was incorporated into the SD model as a subsystem,a dual-timescale model was constructed.Finally,a development simulation and profitability analysis was conducted from 2022 to 2040 to reveal the dynamic optimal range of PV-ESS allocation.Additionally,negative electricity prices were considered during clearing processes.The simulation results revealed differences in profitability and capacity growth between IESS and PV-ESS,helping grid investors and policymakers to determine the boundaries of ESSs and dynamic optimal allocation of PV-ESSs.
基金financial support from the Natural Science Foundation of Guizhou Province (Grant No. ZK 2024-087)Natural Science Foundation of China (no. 22005071)。
文摘The proper bandgap and exceptional photostability enable CsPbI_(3) as a potential candidate for indoor photovoltaics(IPVs),but indoor power conversion efficiency(PCE) is impeded by serious nonradiative recombination stemming from challenges in incomplete DMAPbI_(3) conversion and lattice structure distortion.Here,the coplanar symmetric structu re of hexyl sulfide(HS) is employed to functionalize the CsPbI_(3) layer for fabricating highly efficient IPVs.The hydrogen bond between HS and DMAI promotes the conversion of DMAPbI_(3) to CsPbI_(3),while the copianar symmetric structure enhances crystalline order.Simultaneously,surface sulfidation during HS-induced growth results in the in situ formation of PbS,spontaneously creating a CsPbI_(3) N-P homojunction to enhance band alignment and carrier mobility.As a result,the CsPbI_(3)&HS devices achieve an impressive indoor PCE of 39.90%(P_(in):334.6 μW cm^(-2),P_(out):133.5 μW cm^(-2)) under LED@2968 K,1062 lux,and maintain over 90% initial PCE for 800 h at ^(3)0% air ambient humidity.