Because poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)is water processable,thermally stable,and highly conductive,PEDOT:PSS and its composites have been considered to be one of the most promising f...Because poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)is water processable,thermally stable,and highly conductive,PEDOT:PSS and its composites have been considered to be one of the most promising flexible thermoelectric materials.However,the PEDOT:PSS film prepared from its commercial aqueous dispersion usually has very low conductivity,thus cannot be directly utilized for TE applications.Here,a simple environmental friendly strategy via femtosecond laser irradiation without any chemical dopants and treatments was demonstrated.Under optimal conditions,the electrical conductivity of the treated film is increased to 803.1 S cm^(-1)from 1.2 S cm^(-1)around three order of magnitude higher,and the power factor is improved to 19.0μW m^(-1)K^(-2),which is enhanced more than 200 times.The mechanism for such remarkable enhancement was attributed to the transition of the PEDOT chains from a coil to a linear or expanded coil conformation,reduction of the interplanar stacking distance,and the removal of insulating PSS with increasing the oxidation level of PEDOT,facilitating the charge transportation.This work presents an effective route for fabricating high-performance flexible conductive polymer films and wearable thermoelectric devices.展开更多
Engineering the electrical properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)holds great potential for various applications such as sensors,thermoelectric(TE)generators,and hole transport...Engineering the electrical properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)holds great potential for various applications such as sensors,thermoelectric(TE)generators,and hole transport layers in solar cells.Various strategies have been applied to achieve optimal electrical properties,including base solution post-treatments.However,the working mechanism and the exact details of the structural transformations induced by base post-treatments are still unclear.In this work,we present a comparative study on the post-treatment effects of using three common and green alkali base solutions:namely LiOH,NaOH,and KOH.The structural modifications induced in the film by the base post-treatments are studied by techniques including atomic force microscopy,grazing-incidence wide-angle X-ray scattering,ultraviolet–visible–near-infrared spectroscopy,and attenuated total reflectance Fourier-transform infrared spectroscopy.Base-induced structural modifications are responsible for an improvement in the TE power factor of the films,which depends on the basic solution used.The results are explained on the basis of the different affinity between the alkali cations and the PSS chains,which determines PEDOT dedoping.The results presented here shed light on the structural reorganization occurring in PEDOT:PSS when exposed to high-pH solutions and may serve as inspiration to create future pH-/ion-responsive devices for various applications.展开更多
Thermoelectric(TE)energy harvesting can effectively convert waste heat into electricity,which is a crucial technology to solve energy concerns.As a promising candidate for energy conversion,poly(3,4-ethylenedioxythiop...Thermoelectric(TE)energy harvesting can effectively convert waste heat into electricity,which is a crucial technology to solve energy concerns.As a promising candidate for energy conversion,poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)has gained significant attention owing to its easy doping,high transparency,and solution processability.However,the TE performance of PEDOT:PSS still needs to be further enhanced.Herein,different approaches have been applied for tuning the TE properties:(i)direct dipping PEDOT:PSS thin films in ionic liquid;(ii)post-treatment of the films with concentrated sulfuric acid(H_(2)SO_(4)),and then dipping in ionic liquid.Besides,the same bis(trifluoromethanesulfonyl)amide(TFSI)anion and different cation salts,including 1-ethyl-3-methylimidazolium(EMIM+)and lithium(Li+),are selected to study the influence of varying cation types on the TE properties of PEDOT:PSS.The Seebeck coefficient and electrical conductivity of the PEDOT:PSS film treated with H2SO4EMIM:TFSI increase simultaneously,and the resulting maximum power factor is 46.7μW·m^(-1)·K^(-2),which may be attributed to the ionic liquid facilitating the rearrangement of the molecular chain of PEDOT.The work provides a reference for the development of organic films with high TE properties.展开更多
Developing high-performance poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)sig-nificantly widens the practical applications of flexible organic thermoelectric devices,while the water-based co-solve...Developing high-performance poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)sig-nificantly widens the practical applications of flexible organic thermoelectric devices,while the water-based co-solvent dopants and/or post-treatments are still rarely studied so far.Here,we develop a one-step post-treatment to improve the power factor of PEDOT:PSS films by using a water-based solution,which is composed of co-solvent(polar solvent dimethylacetamide(DMAC)and deionized water)and organic reducing agent L-ascorbic acid(LAA).The 80 vol.%DMAC solution significantly boosts the room-temperature electrical conductivity of the films from 5 to 964 S cm^(−1),while the Seebeck coefficient can be further enhanced from 18.7 to 25μV K−1 by treating with 0.5 mol L−1 LAA,contributing to a sig-nificantly improved power factor of 55.3μW m^(−1)K^(−2).The boosted electrical conductivity is ascribed to the separated PEDOT and PSS phases triggered by the high dielectric constant and polarity of DMAC;while the improved Seebeck coefficient is attributed to the reduced oxidation degree of PEDOT from the reducing agent LAA,both confirmed by the comprehensive structural and morphological characteri-zations.Furthermore,a maximum power factor of 64.4μW m^(−1)K^(−2)can be achieved at 360 K and the observed temperature-dependent electrical transport behavior can be well explained by the Mott variable range hopping model.Besides,a flexible thermoelectric device,assembled by the as-fabricated PEDOT:PSS films,exhibits a maximum output power of∼23 nW at a temperature difference of 25 K,indicating the potential for applying to low-grade wearable electronics.展开更多
Waste energy harvesting can contribute to the increase of the efficiency of many industrial processes,which consume energy to produce valuable products.Among all the wasted energy,heat energy is the most abundant,exis...Waste energy harvesting can contribute to the increase of the efficiency of many industrial processes,which consume energy to produce valuable products.Among all the wasted energy,heat energy is the most abundant,existing in almost any situation.Thermoelectric devices have the capability to harvest and convert the thermal energy into electrical power via the Seebeck effect.With its simple operating principle,thermoelectric devices can be reliable even under the harshest environments,taking advantage of any type of heat source.As a result,various inorganic and organic materials are being explored as thermoelectric materials.Among the reported materials,carbon-based materials are promising in terms of commericialization,due to their nontoxic and abundant nature,and solution processability.In particular,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS),carbon nanotubes,and graphene are extensively studied as thermoelectric materials owing to their remarkable thermoelectric performance.Also,organic-inorganic hybrid halide perovskites show the potential to be used as future high-performance thermoelectric materials.Here,the progess in carbon materials as thermoelectrics is reviewed in detail,focusing on four base materials(PEDOT:PSS,carbon nanotubes,graphene,and organic-inorganic hybrid halide perovskites).This review illuminates the potential of carbon-based materials in the field of thermoelectrics and their application to next-generation energy devices.展开更多
近年来,随着能源危机的加剧,可以将热能与电能进行直接转换的热电材料得到了广泛的关注。在众多热电材料体系中,有机无机纳米复合热电材料具有独特优势。相比于无机材料,有机材料成本低、质量轻、机械柔韧性好、热导率较低。添加不同类...近年来,随着能源危机的加剧,可以将热能与电能进行直接转换的热电材料得到了广泛的关注。在众多热电材料体系中,有机无机纳米复合热电材料具有独特优势。相比于无机材料,有机材料成本低、质量轻、机械柔韧性好、热导率较低。添加不同类型的添加材料构成纳米复合材料后,额外引入的声子-界面散射能进一步降低热导率,同时有机无机材料能带不匹配引起的载流子筛选效应进一步提升塞贝克(Seebeck)系数。因此,目前大量工作证明有机无机纳米复合热电材料有潜力获得高的热电优值(Figure of merit,ZT),在微型热电制冷器件、柔性可穿戴发电设备、温度传感器等领域均具有光明的应用前景。本文聚焦聚(3,4-乙烯二氧噻吩)∶聚(苯乙烯磺酸盐)(PEDOT∶PSS)热电材料及以其为基底构成的纳米复合材料热电性能的研究工作,综述了提升PEDOT∶PSS热电性能的物理方法、化学试剂改性法等。进一步重点讨论了加入不同类型的无机填料的PEDOT∶PSS基纳米复合材料热电性质的研究进展,并揭示了其热电性能提升的内在机制。展开更多
A significant enhancement in the thermoelectric performance was observed for three-dimensional conducting aerogels,which were obtained from poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic)(PEDOTrPSS) an...A significant enhancement in the thermoelectric performance was observed for three-dimensional conducting aerogels,which were obtained from poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic)(PEDOTrPSS) and multiwalled carbon nanotubes(MWCNTs) suspensions by adding different concentrations of metallic silver(Ag).It was found that the electrical conductivity and Seebeck coefficient could be simultaneously increased with the unique structure.Moreover,the conducting aerogels have an ultralow thermal conductivity(0.06 W m^(-1) K^(-1) and a large Brunauer-Emmett-Teller surface area(228 m^2 g^(-1).The highest figure of merit(zT) value in this study was 7.56×10^(-3) at room temperature upon the addition of 33.32 wt.%Ag.Although the zT value was too low,our work may provide new insights into the design and development of the thermoelectric material for applications.Further investigation with PEDOTrPSS aerogels will be continued to get an economical,lightweight,and efficient polymer thermoelectric material.展开更多
Flexible polymer thermoelectric thin film attracts wide attentions because it is compatible with the wearable electronics and e-skin.Herein,we reported an enhanced thermoelectric power factor of PEDOT:PSS from around...Flexible polymer thermoelectric thin film attracts wide attentions because it is compatible with the wearable electronics and e-skin.Herein,we reported an enhanced thermoelectric power factor of PEDOT:PSS from around 1 μWm^(-1) K^(-2) to 117 μWm^(-1) K^(-2) and high substrate-free strain of 20% through synergistically tuning the ordering structure and the oxidation state.An ionic liquid(EMImTCM)was used to decouple the ionic interaction between PEDOT and PSS,rearranging the morphology of structure that significantly benefit the mechanical flexibility and the electrical conductivity.The addition of Lascorbic acid was confirmed as effective dedoping additive of PEDOT polymer that changed the oxidation state and hence boosted the thermoelectric power factor without notable sacrifice of the mechanical flexibility.Moreover,the electrical conductivity of the corresponding film maintained electrically stable(ΔR/R_(0)<0.12%)under 1000 bending cycles which indicates the great bendability.Our work demonstrated the feasibility to controllably tailor the thermoelectric and mechanical performance of the PEDOT:PSS flexible polymer thermoelectric thin film.展开更多
Thermoelectric technology,which is characterized by the interconversion between heat and electricity,is demonstrated as an efficient and environmentally friendly route for thermal energy harvesting and solid-state coo...Thermoelectric technology,which is characterized by the interconversion between heat and electricity,is demonstrated as an efficient and environmentally friendly route for thermal energy harvesting and solid-state cooling devices.The pursuit for high-performance room temperature thermoelectric materials is of significant interest.Here,we proposed a design strategy to dramatically improve the thermoelectric response by constructing a hierarchical multiscale conductor network(AgNWs/CNT)in polymer matrix(PEDOT:PSS).At the optimized composition,the highest Seebeck coefficient and electrical conductivity of base treated ternary PEDOT:PSS/AgNWs/CNT composite are optimized to be 58.6μV K^(-1)and~1950 S cm-1.Correspondingly,the power factor is thus calculated to be on the order of 670μV m^(-1)K^(-2),which is among one of the highest values compared with previous reports.The underlying mechanism is illustrated based on detailed structure,morphology and electron transport quantification.This work affords a novel strategy for the future development of high-performance room temperature nanocomposite thermoelectrics.展开更多
In this paper, we fabricated an organic thermo- electric (TE) device with modified [6,6]-phenyl-C61- butyric acid methyl ester (PCBM) and poly(3,4-ethylene- dioxythiophene) polystyrene sulfonate (PEDOT:PSS); ...In this paper, we fabricated an organic thermo- electric (TE) device with modified [6,6]-phenyl-C61- butyric acid methyl ester (PCBM) and poly(3,4-ethylene- dioxythiophene) polystyrene sulfonate (PEDOT:PSS); the device showed good stability in air condition. For n-leg, PCBM were doped with acridine orange base (3,6-bis (dimethylamino)acridine) (AOB) and 1,3-dimethyl-2,3- dihydro- 1H-benzoimidazole (N-DMBI). Co-doped PCBM utilizes synergistic effects of AOB and N-DMBI, resulting in excellent electrical conductivity and Seebeck coefficient values reaching 2 S/cm and -500 μV/K, respectively, at room temperature with dopant molar ratio of 0.11. P-type leg used modified PEDOT:PSS. Based on modified PCBM and PEDOT:PSS materials, we fabricated a TE module device with 48 p-type and n-type thermocouple and tested their output voltage, short current, and power. Output voltage measured -0.82 V, and generated power reached almost 945 μW with 75 K temperature gradient at 453 K hot-side temperature. These promising results showed potential of modified PEDOT and PCBM as TE materials for application in device optimization.展开更多
基金supported by the National Key Research and Development Program of China(2020YFA0715000)the Guangdong Basic and Applied Basic Research Foundation(2020A1515110250,2021B1515120041)+1 种基金the Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-005)the Fundamental Research Funds for the Central Universities(2020IVA068,2021lll007JC)
文摘Because poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)is water processable,thermally stable,and highly conductive,PEDOT:PSS and its composites have been considered to be one of the most promising flexible thermoelectric materials.However,the PEDOT:PSS film prepared from its commercial aqueous dispersion usually has very low conductivity,thus cannot be directly utilized for TE applications.Here,a simple environmental friendly strategy via femtosecond laser irradiation without any chemical dopants and treatments was demonstrated.Under optimal conditions,the electrical conductivity of the treated film is increased to 803.1 S cm^(-1)from 1.2 S cm^(-1)around three order of magnitude higher,and the power factor is improved to 19.0μW m^(-1)K^(-2),which is enhanced more than 200 times.The mechanism for such remarkable enhancement was attributed to the transition of the PEDOT chains from a coil to a linear or expanded coil conformation,reduction of the interplanar stacking distance,and the removal of insulating PSS with increasing the oxidation level of PEDOT,facilitating the charge transportation.This work presents an effective route for fabricating high-performance flexible conductive polymer films and wearable thermoelectric devices.
基金the Zernike Institute for Advanced Materials for the startup fundsChina Scholarship Council(201606340158)。
文摘Engineering the electrical properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)holds great potential for various applications such as sensors,thermoelectric(TE)generators,and hole transport layers in solar cells.Various strategies have been applied to achieve optimal electrical properties,including base solution post-treatments.However,the working mechanism and the exact details of the structural transformations induced by base post-treatments are still unclear.In this work,we present a comparative study on the post-treatment effects of using three common and green alkali base solutions:namely LiOH,NaOH,and KOH.The structural modifications induced in the film by the base post-treatments are studied by techniques including atomic force microscopy,grazing-incidence wide-angle X-ray scattering,ultraviolet–visible–near-infrared spectroscopy,and attenuated total reflectance Fourier-transform infrared spectroscopy.Base-induced structural modifications are responsible for an improvement in the TE power factor of the films,which depends on the basic solution used.The results are explained on the basis of the different affinity between the alkali cations and the PSS chains,which determines PEDOT dedoping.The results presented here shed light on the structural reorganization occurring in PEDOT:PSS when exposed to high-pH solutions and may serve as inspiration to create future pH-/ion-responsive devices for various applications.
基金supported by the Foundation of Guangzhou Science and Technology Project(B3210530)the Open Fund of the State Key Laboratory of Luminescent Materials and Devices(South China University of Technology,2019-skllmd01)。
文摘Thermoelectric(TE)energy harvesting can effectively convert waste heat into electricity,which is a crucial technology to solve energy concerns.As a promising candidate for energy conversion,poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)has gained significant attention owing to its easy doping,high transparency,and solution processability.However,the TE performance of PEDOT:PSS still needs to be further enhanced.Herein,different approaches have been applied for tuning the TE properties:(i)direct dipping PEDOT:PSS thin films in ionic liquid;(ii)post-treatment of the films with concentrated sulfuric acid(H_(2)SO_(4)),and then dipping in ionic liquid.Besides,the same bis(trifluoromethanesulfonyl)amide(TFSI)anion and different cation salts,including 1-ethyl-3-methylimidazolium(EMIM+)and lithium(Li+),are selected to study the influence of varying cation types on the TE properties of PEDOT:PSS.The Seebeck coefficient and electrical conductivity of the PEDOT:PSS film treated with H2SO4EMIM:TFSI increase simultaneously,and the resulting maximum power factor is 46.7μW·m^(-1)·K^(-2),which may be attributed to the ionic liquid facilitating the rearrangement of the molecular chain of PEDOT.The work provides a reference for the development of organic films with high TE properties.
基金supported by the National Natural Science Foundation of China(Grant No.51802181)Natural Science Basic Research Program of Shaanxi(Grant No.2022JZ-31)+3 种基金Young Talent fund of University Association for Science and Technology in Shaanxi,China(Grant No.20210411)China Postdoctoral Sci-ence Foundation(Grant No.2021M692621)the Foundation of Shaanxi University of Science&Technology(Grant No.2017GBJ-03)ZGC thanks the financial support from the Australian Research Council,QUT capacity building professor program,and HBIS-UQ In-novation center for Sustainable Steel(ICSS)project.
文摘Developing high-performance poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)sig-nificantly widens the practical applications of flexible organic thermoelectric devices,while the water-based co-solvent dopants and/or post-treatments are still rarely studied so far.Here,we develop a one-step post-treatment to improve the power factor of PEDOT:PSS films by using a water-based solution,which is composed of co-solvent(polar solvent dimethylacetamide(DMAC)and deionized water)and organic reducing agent L-ascorbic acid(LAA).The 80 vol.%DMAC solution significantly boosts the room-temperature electrical conductivity of the films from 5 to 964 S cm^(−1),while the Seebeck coefficient can be further enhanced from 18.7 to 25μV K−1 by treating with 0.5 mol L−1 LAA,contributing to a sig-nificantly improved power factor of 55.3μW m^(−1)K^(−2).The boosted electrical conductivity is ascribed to the separated PEDOT and PSS phases triggered by the high dielectric constant and polarity of DMAC;while the improved Seebeck coefficient is attributed to the reduced oxidation degree of PEDOT from the reducing agent LAA,both confirmed by the comprehensive structural and morphological characteri-zations.Furthermore,a maximum power factor of 64.4μW m^(−1)K^(−2)can be achieved at 360 K and the observed temperature-dependent electrical transport behavior can be well explained by the Mott variable range hopping model.Besides,a flexible thermoelectric device,assembled by the as-fabricated PEDOT:PSS films,exhibits a maximum output power of∼23 nW at a temperature difference of 25 K,indicating the potential for applying to low-grade wearable electronics.
基金National Research Foundation of Korea,Grant/Award Numbers:2017M3A7B4041696,2021R1A5A6002853。
文摘Waste energy harvesting can contribute to the increase of the efficiency of many industrial processes,which consume energy to produce valuable products.Among all the wasted energy,heat energy is the most abundant,existing in almost any situation.Thermoelectric devices have the capability to harvest and convert the thermal energy into electrical power via the Seebeck effect.With its simple operating principle,thermoelectric devices can be reliable even under the harshest environments,taking advantage of any type of heat source.As a result,various inorganic and organic materials are being explored as thermoelectric materials.Among the reported materials,carbon-based materials are promising in terms of commericialization,due to their nontoxic and abundant nature,and solution processability.In particular,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS),carbon nanotubes,and graphene are extensively studied as thermoelectric materials owing to their remarkable thermoelectric performance.Also,organic-inorganic hybrid halide perovskites show the potential to be used as future high-performance thermoelectric materials.Here,the progess in carbon materials as thermoelectrics is reviewed in detail,focusing on four base materials(PEDOT:PSS,carbon nanotubes,graphene,and organic-inorganic hybrid halide perovskites).This review illuminates the potential of carbon-based materials in the field of thermoelectrics and their application to next-generation energy devices.
文摘近年来,随着能源危机的加剧,可以将热能与电能进行直接转换的热电材料得到了广泛的关注。在众多热电材料体系中,有机无机纳米复合热电材料具有独特优势。相比于无机材料,有机材料成本低、质量轻、机械柔韧性好、热导率较低。添加不同类型的添加材料构成纳米复合材料后,额外引入的声子-界面散射能进一步降低热导率,同时有机无机材料能带不匹配引起的载流子筛选效应进一步提升塞贝克(Seebeck)系数。因此,目前大量工作证明有机无机纳米复合热电材料有潜力获得高的热电优值(Figure of merit,ZT),在微型热电制冷器件、柔性可穿戴发电设备、温度传感器等领域均具有光明的应用前景。本文聚焦聚(3,4-乙烯二氧噻吩)∶聚(苯乙烯磺酸盐)(PEDOT∶PSS)热电材料及以其为基底构成的纳米复合材料热电性能的研究工作,综述了提升PEDOT∶PSS热电性能的物理方法、化学试剂改性法等。进一步重点讨论了加入不同类型的无机填料的PEDOT∶PSS基纳米复合材料热电性质的研究进展,并揭示了其热电性能提升的内在机制。
基金supported by the National Natural Science Foundation of China(51303116)
文摘A significant enhancement in the thermoelectric performance was observed for three-dimensional conducting aerogels,which were obtained from poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic)(PEDOTrPSS) and multiwalled carbon nanotubes(MWCNTs) suspensions by adding different concentrations of metallic silver(Ag).It was found that the electrical conductivity and Seebeck coefficient could be simultaneously increased with the unique structure.Moreover,the conducting aerogels have an ultralow thermal conductivity(0.06 W m^(-1) K^(-1) and a large Brunauer-Emmett-Teller surface area(228 m^2 g^(-1).The highest figure of merit(zT) value in this study was 7.56×10^(-3) at room temperature upon the addition of 33.32 wt.%Ag.Although the zT value was too low,our work may provide new insights into the design and development of the thermoelectric material for applications.Further investigation with PEDOTrPSS aerogels will be continued to get an economical,lightweight,and efficient polymer thermoelectric material.
基金supported by the Guangdong Innovative and Entrepreneurial Research Team Program,China[grant numbers NO.2016ZT06G587]Shenzhen Science Technology Fund,China[grant numbers NO.KYDPT20181011104007]Shenzhen DRC project,China[2018]1433.
文摘Flexible polymer thermoelectric thin film attracts wide attentions because it is compatible with the wearable electronics and e-skin.Herein,we reported an enhanced thermoelectric power factor of PEDOT:PSS from around 1 μWm^(-1) K^(-2) to 117 μWm^(-1) K^(-2) and high substrate-free strain of 20% through synergistically tuning the ordering structure and the oxidation state.An ionic liquid(EMImTCM)was used to decouple the ionic interaction between PEDOT and PSS,rearranging the morphology of structure that significantly benefit the mechanical flexibility and the electrical conductivity.The addition of Lascorbic acid was confirmed as effective dedoping additive of PEDOT polymer that changed the oxidation state and hence boosted the thermoelectric power factor without notable sacrifice of the mechanical flexibility.Moreover,the electrical conductivity of the corresponding film maintained electrically stable(ΔR/R_(0)<0.12%)under 1000 bending cycles which indicates the great bendability.Our work demonstrated the feasibility to controllably tailor the thermoelectric and mechanical performance of the PEDOT:PSS flexible polymer thermoelectric thin film.
基金supported by the Start-up Funding of Wuhan University of Technology(Grant No.40120490)。
文摘Thermoelectric technology,which is characterized by the interconversion between heat and electricity,is demonstrated as an efficient and environmentally friendly route for thermal energy harvesting and solid-state cooling devices.The pursuit for high-performance room temperature thermoelectric materials is of significant interest.Here,we proposed a design strategy to dramatically improve the thermoelectric response by constructing a hierarchical multiscale conductor network(AgNWs/CNT)in polymer matrix(PEDOT:PSS).At the optimized composition,the highest Seebeck coefficient and electrical conductivity of base treated ternary PEDOT:PSS/AgNWs/CNT composite are optimized to be 58.6μV K^(-1)and~1950 S cm-1.Correspondingly,the power factor is thus calculated to be on the order of 670μV m^(-1)K^(-2),which is among one of the highest values compared with previous reports.The underlying mechanism is illustrated based on detailed structure,morphology and electron transport quantification.This work affords a novel strategy for the future development of high-performance room temperature nanocomposite thermoelectrics.
基金We acknowledge the financial support provided by the National Young Natural Science Foundation of China (Grant No. 61306067) and the Fundamental Research Funds for the Central Universities in Huazhong University of Science and Technology (Nos. 2014NY009 and 2016YXMS033).
文摘In this paper, we fabricated an organic thermo- electric (TE) device with modified [6,6]-phenyl-C61- butyric acid methyl ester (PCBM) and poly(3,4-ethylene- dioxythiophene) polystyrene sulfonate (PEDOT:PSS); the device showed good stability in air condition. For n-leg, PCBM were doped with acridine orange base (3,6-bis (dimethylamino)acridine) (AOB) and 1,3-dimethyl-2,3- dihydro- 1H-benzoimidazole (N-DMBI). Co-doped PCBM utilizes synergistic effects of AOB and N-DMBI, resulting in excellent electrical conductivity and Seebeck coefficient values reaching 2 S/cm and -500 μV/K, respectively, at room temperature with dopant molar ratio of 0.11. P-type leg used modified PEDOT:PSS. Based on modified PCBM and PEDOT:PSS materials, we fabricated a TE module device with 48 p-type and n-type thermocouple and tested their output voltage, short current, and power. Output voltage measured -0.82 V, and generated power reached almost 945 μW with 75 K temperature gradient at 453 K hot-side temperature. These promising results showed potential of modified PEDOT and PCBM as TE materials for application in device optimization.