We demonstrate the hydrothermal synthesis of long copper nanowires based on a simple protocol. We show that the purification of the nanowires is very important and can be achieved easily by wet treatment with glacial ...We demonstrate the hydrothermal synthesis of long copper nanowires based on a simple protocol. We show that the purification of the nanowires is very important and can be achieved easily by wet treatment with glacial acetic acid. Fabrication of random networks of purified copper nanowires leads to flexible transparent electrodes with excellent optoelectronic performances (e.g., 55 Ω/sq. at 94% transparency). The process is carried out at room temperature and no post-treatment is necessary. Hybrid materials with the conductive polymer PEDOT:PSS show similar properties (e.g., 46 Ω/sq, at 93% transparency), with improved mechanical properties. Both electrodes were integrated in capacitive touch sensors.展开更多
3-Hydroxy-1-propanesulfonic acid(HPSA)was applied as a modification layer on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)film via spin-coating,resulting in a massive boost of the conductivity of...3-Hydroxy-1-propanesulfonic acid(HPSA)was applied as a modification layer on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)film via spin-coating,resulting in a massive boost of the conductivity of PEDOT:PSS film,and thus the as-formed PEDOT:PSS/HPSA bilayer film was successfully used as a transparent electrode for ITO-free polymer solar cells(PSCs).Under the optimized concentration of HPSA(0.2 mol L^(-1)),the PEDOT:PSS/HPSA bilayer film has a conductivity of 1020 S cm^(-1),which is improved by about 1400 times of the pristine PEDOT:PSS film(0.7 S cm^(-1)).The sheet resistance of the PEDOT:PSS/HPSA bilayer film was 98Ωsq^(-1),and its transparency in the visible range was over 80%.Both parameters are comparable to those of ITO,enabling its suitability as the transparent electrode.According to atomic force microscopy(AFM),UV-Vis and Raman spectroscopic measurements,the conductivity enhancement was resulted from the removal of PSS moiety by methanol solvent and HPSA-induced segregation of insulating PSS chains along with the conformation transition of the conductive PEDOT chains within PEDOT:PSS.Upon applying PEDOT:PSS/HPSA bilayer film as the transparent electrode substituting ITO,the ITO-free polymer solar cells(PSCs)based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]:[6,6]-phenyl C71-butyric acid methyl ester(PC_(71)BM)(PCDTBT:PC_(71)BM)active layer exhibited a power conversion efficiency(PCE)of 5.52%,which is comparable to that of the traditional ITO-based devices.展开更多
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) is usually sandwiched between indium tin oxide(ITO) and a functional polymer in order to improve the performance of the device. However, bec...Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) is usually sandwiched between indium tin oxide(ITO) and a functional polymer in order to improve the performance of the device. However, because of the strong acidic nature of PEDOT:PSS, the instability of the ITO/PEDOT:PSS interface is also observed. The mechanism of degradation of the device remains is unclear and needs to be further studied. In this article, we investigate the in-situ electrochromism of PEDOT:PSS to disclose the cause of the degradation. X-ray photoelectron spectroscopy(XPS) was used to characterize the PEDOT:PSS films, as well as the PEDOT:PSS plus polyethylene glycol(PEG) films with and without indium ions. The electrochromic devices(ECD) based on PEDOT:PSS and PEG with and without indium ions are carried out by in-situ micro-Raman and laser reflective measurement(LRM). For comparison, ECD based on PEDOT:PSS and PEG films with LiCl, KCl, NaCl or InCl_3 are also investigated by LRM. The results show that PEDOT:PSS is further reduced when negatively biased, and oxidized when positively biased. This could identify that PEDOT:PSS with indium ions from PEDOT:PSS etching ITO will lose dopants when negatively biased. The LRM shows that the device with indium ions has a stronger effect on the reduction property of PEDOT:PSS-PEG film than the device without indium ions. The contrast of the former device is 44%, that of the latter device is about 3%. The LRM also shows that the contrasts of the device based on PEDOT:PSS+PEG with LiCl, KCl, NaCl, InCl_3 are 30%, 27%, 15%, and 18%, respectively.展开更多
In this paper, we report a Schottky ultraviolet photodetector based on poly(3,4-ethylenedioxy-thiophene)poly(styrenesulfonate)(PEDOT:PSS) transparent electrode contacts to Mg0.1Zn0.9O. The I-V characteristic cu...In this paper, we report a Schottky ultraviolet photodetector based on poly(3,4-ethylenedioxy-thiophene)poly(styrenesulfonate)(PEDOT:PSS) transparent electrode contacts to Mg0.1Zn0.9O. The I-V characteristic curves of the device are measured in the dark condition and under the illumination of a 340-nm UV light. The device shows a typical rectifying behavior with a current rectification ratio of 103 at ±2 V, which exhibits a good Schottky behavior. The phototo-dark current ratio is high, which is 1×103at-4 V. A peak response of 0.156 A/W at 340 nm is observed. The device also exhibits a wide response from 250 nm to 340 nm, with a response larger than 0.1 A/W. It covers the UV-B region(280 nm-320 nm), which makes the device very suitable for the detection of UV-B light.展开更多
We develop a heterojunction-based Schottky solar cell consisting of n-type GaN and PEDOT:PSS and also investigate the effect of annealing on the performance of the solar cell. The results show that the open circuit v...We develop a heterojunction-based Schottky solar cell consisting of n-type GaN and PEDOT:PSS and also investigate the effect of annealing on the performance of the solar cell. The results show that the open circuit voltage (Voc) increases from 0.54 V to 0.56 V, 0.71 V and 0.82 eV while decreases to 0.69 eV after annealing at 100 ℃, 130 ℃, 160 ℃, and 200 ℃, respectively, which can be ascribed to the change of barrier height of PEDOT:PSS/GaN Schottky contact induced by variation of the work function of the PEDOT:PSS. Furthermore, the conductivity and surface roughness measurements of the PEDOT:PSS indicate that annealing can increase the grain size and improve the connectivity between PEDOT and PSS particles, and cause thermal degradation at the same time, which leads to the rise in short-circuit current density (ISC) up to 160 ℃ and the dropoff in ISC after annealing at 200 ℃.展开更多
An increase of work function (0.3 eV) is achieved by irradiating poly(3,4-ethylenedioxythiophene):poly(styrene sul- fonate) (PEDOT:PSS) film in vacuum with 254-nm ultraviolet (UV) light. The mechanism for ...An increase of work function (0.3 eV) is achieved by irradiating poly(3,4-ethylenedioxythiophene):poly(styrene sul- fonate) (PEDOT:PSS) film in vacuum with 254-nm ultraviolet (UV) light. The mechanism for such an improvement is investigated by photoelectron yield spectroscopy, X-ray photo electron energy spectrum, and field emission technique. Sur- face oxidation and composition change are found as the reasons for work function increase. The UV-treated PEDOT:PSS film is used as the hole injection layer in a hole-only device. Hole injection is improved by UV-treated PEDOT:PSS film without baring the enlargement of film resistance. Our result demonstrates that UV treatment is more suitable for modifying the injection barrier than UV ozone exposure.展开更多
In this paper, we investigate the effects of glycerol doping on transmittance, conductivity and surface morphology of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate))(PEDOT:PSS) and its influence on...In this paper, we investigate the effects of glycerol doping on transmittance, conductivity and surface morphology of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate))(PEDOT:PSS) and its influence on the performance of perovskite solar cells.. The conductivity of PEDOT:PSS is improved obviously by doping glycerol. The maximum of the conductivity is 0.89 S/cm when the doping concentration reaches 6 wt%, which increases about 127 times compared with undoped. The perovskite solar cells are fabricated with a configuration of indium tin oxide(ITO)/PEDOT:PSS/CH_3NH_3PbI_3/PC_(61)BM/Al, where PEDOT:PSS and PC_(61)BM are used as hole and electron transport layers, respectively. The results show an improvement of hole charge transport as well as an increase of short-circuit current density and a reduction of series resistance, owing to the higher conductivity of the doped PEDOT:PSS. Consequently, it improves the whole performance of perovskite solar cell. The power conversion efficiency(PCE) of the device is improved from 8.57% to 11.03% under AM 1.5 G(100 mW/cm^2 illumination) after the buffer layer has been modified.展开更多
A significant enhancement in the thermoelectric performance was observed for three-dimensional conducting aerogels,which were obtained from poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic)(PEDOTrPSS) an...A significant enhancement in the thermoelectric performance was observed for three-dimensional conducting aerogels,which were obtained from poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic)(PEDOTrPSS) and multiwalled carbon nanotubes(MWCNTs) suspensions by adding different concentrations of metallic silver(Ag).It was found that the electrical conductivity and Seebeck coefficient could be simultaneously increased with the unique structure.Moreover,the conducting aerogels have an ultralow thermal conductivity(0.06 W m^(-1) K^(-1) and a large Brunauer-Emmett-Teller surface area(228 m^2 g^(-1).The highest figure of merit(zT) value in this study was 7.56×10^(-3) at room temperature upon the addition of 33.32 wt.%Ag.Although the zT value was too low,our work may provide new insights into the design and development of the thermoelectric material for applications.Further investigation with PEDOTrPSS aerogels will be continued to get an economical,lightweight,and efficient polymer thermoelectric material.展开更多
Organic solar cells (OSCs) is a new generation of solar cells have emerged as an alternative to conventional Si-based solar cells owing to their advantages of low cost, ease of fabrication and their potential for th...Organic solar cells (OSCs) is a new generation of solar cells have emerged as an alternative to conventional Si-based solar cells owing to their advantages of low cost, ease of fabrication and their potential for the manufacture of flexible and large area solar cells. So we chose that part to beginning study of the material and all parameters effects in environmental condition because the solar cell working in environment. In this study the fabrication of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend flexible thin film using spin coating was reported. Process parameters like solvent, electron donor to acceptor ratio, concentration and temperature were also studied. We used solvent systems to make active layer of P3HT:PCBM composite and PEDOT:PSS as a buffer layer. Highest absorption was obtained for the flexible thin film made with 1:1 and 1:0.75 ratio of P3HT to PCBM. Chloroform solvent in 40 gm/ml concentration at 90 ~C was the optimum conditions to make flexible device.展开更多
文摘We demonstrate the hydrothermal synthesis of long copper nanowires based on a simple protocol. We show that the purification of the nanowires is very important and can be achieved easily by wet treatment with glacial acetic acid. Fabrication of random networks of purified copper nanowires leads to flexible transparent electrodes with excellent optoelectronic performances (e.g., 55 Ω/sq. at 94% transparency). The process is carried out at room temperature and no post-treatment is necessary. Hybrid materials with the conductive polymer PEDOT:PSS show similar properties (e.g., 46 Ω/sq, at 93% transparency), with improved mechanical properties. Both electrodes were integrated in capacitive touch sensors.
基金supported by the National Key Research and Development Program of China (2017YFA0402800)the National Natural Science Foundation of China (51403005, 51572254, 11604279)+3 种基金the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (2016FXZY003)Key Technologies R&D Program of He’nan Province (172102210459)Foundation of He’nan Educational Committee (16A430027)Nanhu Scholars Program for Young Scholars of Xinyang Normal University
文摘3-Hydroxy-1-propanesulfonic acid(HPSA)was applied as a modification layer on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)film via spin-coating,resulting in a massive boost of the conductivity of PEDOT:PSS film,and thus the as-formed PEDOT:PSS/HPSA bilayer film was successfully used as a transparent electrode for ITO-free polymer solar cells(PSCs).Under the optimized concentration of HPSA(0.2 mol L^(-1)),the PEDOT:PSS/HPSA bilayer film has a conductivity of 1020 S cm^(-1),which is improved by about 1400 times of the pristine PEDOT:PSS film(0.7 S cm^(-1)).The sheet resistance of the PEDOT:PSS/HPSA bilayer film was 98Ωsq^(-1),and its transparency in the visible range was over 80%.Both parameters are comparable to those of ITO,enabling its suitability as the transparent electrode.According to atomic force microscopy(AFM),UV-Vis and Raman spectroscopic measurements,the conductivity enhancement was resulted from the removal of PSS moiety by methanol solvent and HPSA-induced segregation of insulating PSS chains along with the conformation transition of the conductive PEDOT chains within PEDOT:PSS.Upon applying PEDOT:PSS/HPSA bilayer film as the transparent electrode substituting ITO,the ITO-free polymer solar cells(PSCs)based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]:[6,6]-phenyl C71-butyric acid methyl ester(PC_(71)BM)(PCDTBT:PC_(71)BM)active layer exhibited a power conversion efficiency(PCE)of 5.52%,which is comparable to that of the traditional ITO-based devices.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA034201)the Chinese Universities Scientific Fund(Grant No.2015LX002)
文摘Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) is usually sandwiched between indium tin oxide(ITO) and a functional polymer in order to improve the performance of the device. However, because of the strong acidic nature of PEDOT:PSS, the instability of the ITO/PEDOT:PSS interface is also observed. The mechanism of degradation of the device remains is unclear and needs to be further studied. In this article, we investigate the in-situ electrochromism of PEDOT:PSS to disclose the cause of the degradation. X-ray photoelectron spectroscopy(XPS) was used to characterize the PEDOT:PSS films, as well as the PEDOT:PSS plus polyethylene glycol(PEG) films with and without indium ions. The electrochromic devices(ECD) based on PEDOT:PSS and PEG with and without indium ions are carried out by in-situ micro-Raman and laser reflective measurement(LRM). For comparison, ECD based on PEDOT:PSS and PEG films with LiCl, KCl, NaCl or InCl_3 are also investigated by LRM. The results show that PEDOT:PSS is further reduced when negatively biased, and oxidized when positively biased. This could identify that PEDOT:PSS with indium ions from PEDOT:PSS etching ITO will lose dopants when negatively biased. The LRM shows that the device with indium ions has a stronger effect on the reduction property of PEDOT:PSS-PEG film than the device without indium ions. The contrast of the former device is 44%, that of the latter device is about 3%. The LRM also shows that the contrasts of the device based on PEDOT:PSS+PEG with LiCl, KCl, NaCl, InCl_3 are 30%, 27%, 15%, and 18%, respectively.
基金Project supported by the National Natural Science Foundation of China(Grant No.50972007)the National Basic Research Program of China(Grant No.2011CB932703)+1 种基金the National Natural Science Foundation for Distinguished Young Scholars of China(Grant No.60825407)the Opened Fund of the State Key Laboratory on Integrated Optoelectronics
文摘In this paper, we report a Schottky ultraviolet photodetector based on poly(3,4-ethylenedioxy-thiophene)poly(styrenesulfonate)(PEDOT:PSS) transparent electrode contacts to Mg0.1Zn0.9O. The I-V characteristic curves of the device are measured in the dark condition and under the illumination of a 340-nm UV light. The device shows a typical rectifying behavior with a current rectification ratio of 103 at ±2 V, which exhibits a good Schottky behavior. The phototo-dark current ratio is high, which is 1×103at-4 V. A peak response of 0.156 A/W at 340 nm is observed. The device also exhibits a wide response from 250 nm to 340 nm, with a response larger than 0.1 A/W. It covers the UV-B region(280 nm-320 nm), which makes the device very suitable for the detection of UV-B light.
基金supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No.JB141104)
文摘We develop a heterojunction-based Schottky solar cell consisting of n-type GaN and PEDOT:PSS and also investigate the effect of annealing on the performance of the solar cell. The results show that the open circuit voltage (Voc) increases from 0.54 V to 0.56 V, 0.71 V and 0.82 eV while decreases to 0.69 eV after annealing at 100 ℃, 130 ℃, 160 ℃, and 200 ℃, respectively, which can be ascribed to the change of barrier height of PEDOT:PSS/GaN Schottky contact induced by variation of the work function of the PEDOT:PSS. Furthermore, the conductivity and surface roughness measurements of the PEDOT:PSS indicate that annealing can increase the grain size and improve the connectivity between PEDOT and PSS particles, and cause thermal degradation at the same time, which leads to the rise in short-circuit current density (ISC) up to 160 ℃ and the dropoff in ISC after annealing at 200 ℃.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61076057,61376059,61171023,and 91221202,)the National Basic Research Program of China(Grant Nos.2012CB932701 and 2011CB933001)
文摘An increase of work function (0.3 eV) is achieved by irradiating poly(3,4-ethylenedioxythiophene):poly(styrene sul- fonate) (PEDOT:PSS) film in vacuum with 254-nm ultraviolet (UV) light. The mechanism for such an improvement is investigated by photoelectron yield spectroscopy, X-ray photo electron energy spectrum, and field emission technique. Sur- face oxidation and composition change are found as the reasons for work function increase. The UV-treated PEDOT:PSS film is used as the hole injection layer in a hole-only device. Hole injection is improved by UV-treated PEDOT:PSS film without baring the enlargement of film resistance. Our result demonstrates that UV treatment is more suitable for modifying the injection barrier than UV ozone exposure.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61264002,61166002,91333206,and 51463011)the Natural Science Foundation of Gansu Province,China(Grant No.1308RJZA159)+2 种基金the New Century Excellent Talents in University of Ministry of Education of China(Grant No.NCET-13-0840)the Research Project of Graduate Teacher of Gansu Province,China(Grant No.2014A-0042)the Postdoctoral Science Foundation from Lanzhou Jiaotong University,China
文摘In this paper, we investigate the effects of glycerol doping on transmittance, conductivity and surface morphology of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate))(PEDOT:PSS) and its influence on the performance of perovskite solar cells.. The conductivity of PEDOT:PSS is improved obviously by doping glycerol. The maximum of the conductivity is 0.89 S/cm when the doping concentration reaches 6 wt%, which increases about 127 times compared with undoped. The perovskite solar cells are fabricated with a configuration of indium tin oxide(ITO)/PEDOT:PSS/CH_3NH_3PbI_3/PC_(61)BM/Al, where PEDOT:PSS and PC_(61)BM are used as hole and electron transport layers, respectively. The results show an improvement of hole charge transport as well as an increase of short-circuit current density and a reduction of series resistance, owing to the higher conductivity of the doped PEDOT:PSS. Consequently, it improves the whole performance of perovskite solar cell. The power conversion efficiency(PCE) of the device is improved from 8.57% to 11.03% under AM 1.5 G(100 mW/cm^2 illumination) after the buffer layer has been modified.
基金supported by the National Natural Science Foundation of China(51303116)
文摘A significant enhancement in the thermoelectric performance was observed for three-dimensional conducting aerogels,which were obtained from poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic)(PEDOTrPSS) and multiwalled carbon nanotubes(MWCNTs) suspensions by adding different concentrations of metallic silver(Ag).It was found that the electrical conductivity and Seebeck coefficient could be simultaneously increased with the unique structure.Moreover,the conducting aerogels have an ultralow thermal conductivity(0.06 W m^(-1) K^(-1) and a large Brunauer-Emmett-Teller surface area(228 m^2 g^(-1).The highest figure of merit(zT) value in this study was 7.56×10^(-3) at room temperature upon the addition of 33.32 wt.%Ag.Although the zT value was too low,our work may provide new insights into the design and development of the thermoelectric material for applications.Further investigation with PEDOTrPSS aerogels will be continued to get an economical,lightweight,and efficient polymer thermoelectric material.
文摘Organic solar cells (OSCs) is a new generation of solar cells have emerged as an alternative to conventional Si-based solar cells owing to their advantages of low cost, ease of fabrication and their potential for the manufacture of flexible and large area solar cells. So we chose that part to beginning study of the material and all parameters effects in environmental condition because the solar cell working in environment. In this study the fabrication of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend flexible thin film using spin coating was reported. Process parameters like solvent, electron donor to acceptor ratio, concentration and temperature were also studied. We used solvent systems to make active layer of P3HT:PCBM composite and PEDOT:PSS as a buffer layer. Highest absorption was obtained for the flexible thin film made with 1:1 and 1:0.75 ratio of P3HT to PCBM. Chloroform solvent in 40 gm/ml concentration at 90 ~C was the optimum conditions to make flexible device.