期刊文献+
共找到23,920篇文章
< 1 2 250 >
每页显示 20 50 100
Global Change in Agricultural Flash Drought over the 21st Century 被引量:1
1
作者 Emily BLACK 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期209-220,I0002-I0019,共30页
Agricultural flash droughts are high-impact phenomena, characterized by rapid soil moisture dry down. The ensuing dry conditions can persist for weeks to months, with detrimental effects on natural ecosystems and crop... Agricultural flash droughts are high-impact phenomena, characterized by rapid soil moisture dry down. The ensuing dry conditions can persist for weeks to months, with detrimental effects on natural ecosystems and crop cultivation. Increases in the frequency of these rare events in a future warmer climate would have significant societal impact. This study uses an ensemble of 10 Coupled Model Intercomparison Project(CMIP) models to investigate the projected change in agricultural flash drought during the 21st century. Comparison across geographical regions and climatic zones indicates that individual events are preceded by anomalously low relative humidity and precipitation, with long-term trends governed by changes in temperature, relative humidity, and soil moisture. As a result of these processes, the frequency of both upperlevel and root-zone flash drought is projected to more than double in the mid-and high latitudes over the 21st century, with hot spots developing in the temperate regions of Europe, and humid regions of South America, Europe, and southern Africa. 展开更多
关键词 flash drought climate change soil moisture agricultural drought CMIP
下载PDF
Characterization and Propagation of Historical and Projected Droughts in the Umatilla River Basin, Oregon, USA 被引量:1
2
作者 Sudip GAUTAM Alok SAMANTARAY +1 位作者 Meghna BABBAR-SEBENS Meenu RAMADAS 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期247-262,I0020-I0028,共25页
Climate change is expected to have long-term impacts on drought and wildfire risks in Oregon as summers continue to become warmer and drier. This paper investigates the projected changes in drought characteristics and... Climate change is expected to have long-term impacts on drought and wildfire risks in Oregon as summers continue to become warmer and drier. This paper investigates the projected changes in drought characteristics and drought propagation in the Umatilla River Basin in northeastern Oregon for mid-century(2030–2059) and late-century(2070–2099) climate scenarios. Drought characteristics for projected climates were determined using downscaled CMIP5 climate datasets from ten climate models and Soil and Water Assessment Tool to simulate effects on hydrologic processes. Short-term(three months) drought characteristics(frequency, duration, and severity) were analyzed using four drought indices, including the Standardized Precipitation Index(SPI-3), Standardized Precipitation-Evapotranspiration Index(SPEI-3), Standardized Streamflow Index(SSI-3), and the Standardized Soil Moisture Index(SSMI-3). Results indicate that short-term meteorological droughts are projected to become more prevalent, with up to a 20% increase in the frequency of SPI-3drought events. Short-term hydrological droughts are projected to become more frequent(average increase of 11% in frequency of SSI-3 drought events), more severe, and longer in duration(average increase of 8% for short-term droughts).Similarly, short-term agricultural droughts are projected to become more frequent(average increase of 28% in frequency of SSMI-3 drought events) but slightly shorter in duration(average decrease of 4%) in the future. Historically, drought propagation time from meteorological to hydrological drought is shorter than from meteorological to agricultural drought in most sub-basins. For the projected climate scenarios, the decrease in drought propagation time will likely stress the timing and capacity of water supply in the basin for irrigation and other uses. 展开更多
关键词 Umatilla drought SPI SPEI SSI SSMI
下载PDF
Exogenous melatonin improves cotton yield under drought stress by enhancing root development and reducing root damage 被引量:1
3
作者 Lingxiao Zhu Hongchun Sun +8 位作者 Ranran Wang Congcong Guo Liantao Liu Yongjiang Zhang Ke Zhang Zhiying Bai Anchang Li Jiehua Zhu Cundong Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3387-3405,共19页
The exogenous application of melatonin by the root drenching method is an effective way to improve crop drought resistance.However,the optimal concentration of melatonin by root drenching and the physiological mechani... The exogenous application of melatonin by the root drenching method is an effective way to improve crop drought resistance.However,the optimal concentration of melatonin by root drenching and the physiological mechanisms underlying melatonin-induced drought tolerance in cotton(Gossypium hirsutum L.)roots remain elusive.This study determined the optimal concentration of melatonin by root drenching and explored the protective effects of melatonin on cotton roots.The results showed that 50μmol L-1 melatonin was optimal and significantly mitigated the inhibitory effect of drought on cotton seedling growth.Exogenous melatonin promoted root development in drought-stressed cotton plants by remarkably increasing the root length,projected area,surface area,volume,diameter,and biomass.Melatonin also mitigated the drought-weakened photosynthetic capacity of cotton and regulated the endogenous hormone contents by regulating the relative expression levels of hormone-synthesis genes under drought stress.Melatonin-treated cotton seedlings maintained optimal enzymatic and non-enzymatic antioxidant capacities,and produced relatively lower levels of reactive oxygen species and malondialdehyde,thus reducing the drought stress damage to cotton roots(such as mitochondrial damage).Moreover,melatonin alleviated the yield and fiber length declines caused by drought stress.Taken together,these findings show that root drenching with exogenous melatonin increases the cotton yield by enhancing root development and reducing the root damage induced by drought stress.In summary,these results provide a foundation for the application of melatonin in the field by the root drenching method. 展开更多
关键词 COTTON drought MELATONIN root morphology root physiology yield
下载PDF
Assessing the Performance of CMIP6 Models in Simulating Droughts across Global Drylands 被引量:1
4
作者 Xiaojing YU Lixia ZHANG +1 位作者 Tianjun ZHOU Jianghua ZHENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期193-208,共16页
Both the attribution of historical change and future projections of droughts rely heavily on climate modeling. However,reasonable drought simulations have remained a challenge, and the related performances of the curr... Both the attribution of historical change and future projections of droughts rely heavily on climate modeling. However,reasonable drought simulations have remained a challenge, and the related performances of the current state-of-the-art Coupled Model Intercomparison Project phase 6(CMIP6) models remain unknown. Here, both the strengths and weaknesses of CMIP6 models in simulating droughts and corresponding hydrothermal conditions in drylands are assessed.While the general patterns of simulated meteorological elements in drylands resemble the observations, the annual precipitation is overestimated by ~33%(with a model spread of 2.3%–77.2%), along with an underestimation of potential evapotranspiration(PET) by ~32%(17.5%–47.2%). The water deficit condition, measured by the difference between precipitation and PET, is 50%(29.1%–71.7%) weaker than observations. The CMIP6 models show weaknesses in capturing the climate mean drought characteristics in drylands, particularly with the occurrence and duration largely underestimated in the hyperarid Afro-Asian areas. Nonetheless, the drought-associated meteorological anomalies, including reduced precipitation, warmer temperatures, higher evaporative demand, and increased water deficit conditions, are reasonably reproduced. The simulated magnitude of precipitation(water deficit) associated with dryland droughts is overestimated by 28%(24%) compared to observations. The observed increasing trends in drought fractional area,occurrence, and corresponding meteorological anomalies during 1980–2014 are reasonably reproduced. Still, the increase in drought characteristics, associated precipitation and water deficit are obviously underestimated after the late 1990s,especially for mild and moderate droughts, indicative of a weaker response of dryland drought changes to global warming in CMIP6 models. Our results suggest that it is imperative to employ bias correction approaches in drought-related studies over drylands by using CMIP6 outputs. 展开更多
关键词 droughtS hydrothermal conditions DRYLANDS CMIP6 model evaluation
下载PDF
Overexpression of the transcription factor MdWRKY115 improves drought and osmotic stress tolerance by directly binding to the MdRD22 promoter in apple 被引量:1
5
作者 Qinglong Dong Yi Tian +9 位作者 Xuemei Zhang Dingyue Duan He Zhang Kaiyu Yang Peng Jia Haoan Luan Suping Guo Guohui Qi Ke Mao Fengwang Ma 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期629-640,共12页
Abiotic stress reduces plant yield and quality.WRKY transcription factors play key roles in abiotic stress responses in plants,but the molecular mechanisms by which WRKY transcription factors mediate responses to drou... Abiotic stress reduces plant yield and quality.WRKY transcription factors play key roles in abiotic stress responses in plants,but the molecular mechanisms by which WRKY transcription factors mediate responses to drought and osmotic stresses in apple(Malus×domestica Borkh.)remain unclear.Here,we functionally characterized the apple GroupⅢWRKY gene MdWRKY115.qRT-PCR analysis showed that MdWRKY115 expression was up-regulated by drought and osmotic stresses.GUS activity analysis revealed that the promoter activity of MdWRKY115 was enhanced under osmotic stress.Subcellular localization and transactivation assays indicated that MdWRKY115 was localized to the nucleus and had a transcriptional activity domain at the N-terminal region.Transgenic analysis revealed that the overexpression of MdWRKY115 in Arabidopsis plants and in apple callus markedly enhanced their tolerance to drought and osmotic stresses.DNA affinity purification sequencing showed that MdWRKY115 binds to the promoter of the stress-related gene MdRD22.This binding was further verified by an electrophoretic mobility shift assay.Collectively,these findings suggest that MdWRKY115 is an important regulator of osmotic and drought stress tolerance in apple. 展开更多
关键词 APPLE MdWRKY115 Osmotic stress drought stress Function analysis
下载PDF
Resilience and response:Unveiling the impacts of extreme droughts on forests through integrated dendrochronological and remote sensing analyses 被引量:1
6
作者 Han Shi Xi Peng +6 位作者 Yong-Jiao Zhou Ai-Ying Wang Xue-Kai Sun Na Li Quan-Sheng Bao Gude Buri Guang-You Hao 《Forest Ecosystems》 SCIE CSCD 2024年第4期491-501,共11页
Extreme droughts are anticipated to have detrimental impacts on forest ecosystems,especially in water-limited regions,due to the influence of climate change.However,considerable uncertainty remains regarding the patte... Extreme droughts are anticipated to have detrimental impacts on forest ecosystems,especially in water-limited regions,due to the influence of climate change.However,considerable uncertainty remains regarding the patterns in species-specific responses to extreme droughts.Here,we conducted a study integrating dendrochronology and remote sensing methods to investigate the mosaic-distributed maple-oak(native)natural forests and poplar plantations(introduced)in the Horqin Sandy Land,Northeast China.We assessed the impacts of extreme droughts on tree performances by measuring interannual variations in radial growth and vegetation index.The results showed that precipitation and self-calibrated palmer drought severity index(scPDSI)are the major factors influencing tree-ring width index(RWI)and normalized difference vegetation index(NDVI).The severe droughts between 2000 and 2004 resulted in reduced RWI in the three studied tree species as well as led to NDVI reductions in both the maple-oak natural forests and the poplar plantations.The RWI reached the nadir during the2000-2004 severe droughts and remained at low levels two years after the severe drought,creating a legacy effect.In contrast to the lack of significant correlation between RWI and scPDSI,NDVI exhibited a significant positive correlation with scPDSI indicating the greater sensitivity of canopy performance to droughts than radial growth.Furthermore,interspecific differences in RWI and NDVI responses were observed,with the fast-growing poplar species experiencing a more significant RWI decrease and more negative NDVI anomaly during severe droughts than native species,highlighting the species-specific trade-offs between drought resilience and growth rate.This study emphasizes the importance of combining tree-level radial growth with landscape-scale canopy remote sensing to understand forest resilience and response.Our study improves our understanding of forest responses to extreme drought and highlights species differences in climate responses,offering crucial insights for optimizing species selection in sustainable afforestation and forest management in water-limited regions under the influence of climate change. 展开更多
关键词 Introduced tree species Native tree species NDVI Severe drought Tree-ring width
下载PDF
Impacts of Future Changes in Heavy Precipitation and Extreme Drought on the Economy over South China and Indochina 被引量:1
7
作者 Bin TANG Wenting HU +4 位作者 Anmin DUAN Yimin LIU Wen BAO Yue XIN Xianyi YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1184-1200,I0022-I0034,共30页
Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distribut... Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distributed along the coastline and greatly affected by global warming,understanding the possible economic impacts induced by future changes in the maximum consecutive 5-day precipitation(RX5day)and the maximum consecutive dry days(CDD)is critical for adaptation planning in this region.Based on the latest data released by phase 6 of the Coupled Model Intercomparison Project(CMIP6),future projections of precipitation extremes with bias correction and their impacts on GDP over the INCSC region under the fossil-fueled development Shared Socioeconomic Pathway(SSP5-8.5)are investigated.Results indicate that RX5day will intensify robustly throughout the INCSC region,while CDD will lengthen in most regions under global warming.The changes in climate consistently dominate the effect on GDP over the INCSC region,rather than the change of GDP.If only considering the effect of climate change on GDP,the changes in precipitation extremes bring a larger impact on the economy in the future to the provinces of Hunan,Jiangxi,Fujian,Guangdong,and Hainan in South China,as well as the Malay Peninsula and southern Cambodia in Indochina.Thus,timely regional adaptation strategies are urgent for these regions.Moreover,from the sub-regional average viewpoint,over two thirds of CMIP6 models agree that maintaining a lower global warming level will reduce the economic impacts from heavy precipitation over the INCSC region. 展开更多
关键词 CMIP6 heavy precipitation extreme drought South China INDOCHINA economic impact
下载PDF
Grain Yield,Biomass Accumulation,and Leaf Photosynthetic Characteristics of Rice under Combined Salinity-Drought Stress 被引量:1
8
作者 WEI Huanhe GENG Xiaoyu +7 位作者 ZHANG Xiang ZHU Wang ZHANG Xubin CHEN Yinglong HUO Zhongyang ZHOU Guisheng MENG Tianyao DAI Qigen 《Rice science》 SCIE CSCD 2024年第1期118-128,I0023,共12页
Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinit... Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinity-drought stress poses a major threat to rice production.In this study,two salinity levels(NS,non-salinity;HS,high salinity)along with three drought treatments(CC,control condition;DJ,drought stress imposed at jointing;DH,drought stress imposed at heading)were performed to investigate their combined influences on leaf photosynthetic characteristics,biomass accumulation,and rice yield formation.Salinity,drought,and their combination led to a shortened growth period from heading to maturity,resulting in a reduced overall growth duration.Grain yield was reduced under both salinity and drought stress,with a more substantial reduction under the combined salinity-drought stress.The combined stress imposed at heading caused greater yield losses in rice compared with the stress imposed at jointing.Additionally,the combined salinity-drought stress induced greater decreases in shoot biomass accumulation from heading to maturity,as well as in shoot biomass and nonstructural carbohydrate(NSC)content in the stem at heading and maturity.However,it increased the harvest index and NSC remobilization reserve.Salinity and drought reduced the leaf area index and SPAD value of flag leaves and weakened the leaf photosynthetic characteristics as indicated by lower photosynthetic rates,transpiration rates,and stomatal conductance.These reductions were more pronounced under the combined stress.Salinity,drought,and especially their combination,decreased the activities of ascorbate peroxidase,catalase,and superoxide dismutase,while increasing the contents of malondialdehyde,hydrogen peroxide,and superoxide radical.Our results indicated a more significant yield loss in rice when subjected to combined salinity-drought stress.The individual and combined stresses of salinity and drought diminished antioxidant enzyme activities,inhibited leaf photosynthetic functions,accelerated leaf senescence,and subsequently lowered assimilate accumulation and grain yield. 展开更多
关键词 antioxidant defense system combined salinity-drought stress drought stress photosynthetic characteristics RICE salinity stress
下载PDF
Extreme Meteorological Drought Events over China(1951-2022):Migration Patterns,Diversity of Temperature Extremes,and Decadal Variations 被引量:1
9
作者 Zhenchen LIU Wen ZHOU Xin WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第12期2313-2336,共24页
Recently,extreme meteorological droughts have affected China,causing terrible socioeconomic impacts.Despite previous research on the spatiotemporal characteristics and mechanisms of drought,two crucial issues remain s... Recently,extreme meteorological droughts have affected China,causing terrible socioeconomic impacts.Despite previous research on the spatiotemporal characteristics and mechanisms of drought,two crucial issues remain seldom explored.First,an event-oriented drought chronology with detailed spatiotemporal evolutions is urgently required.Second,the complex migration patterns and diversity of synchronous temperature extremes need to be quantitatively investigated.Accordingly,the main achievements of our investigation are as follows.We produced an event-oriented set of extreme meteorological droughts over China through the application of a newly developed 3D DBSCAN-based detection method(deposited on https://doi.org/10.25452/figshare.plus.25512334),which was verified with a historical atlas and monographs on a case-by-case basis.In addition,distinctive migration patterns(i.e.,stationary/propagation types)are identified and ranked,considering the differences in latitudinal zones and coastal/inland locations.We also analyze the diversity of synchronous temperature extremes(e.g.,hotness and coldness).Notably,an increasing trend in hot droughts occurred over China since the late 1990s,predominantly appearing to the south of 30°N and north of 40°N.All drought events and synchronous temperature extremes are ranked using a comprehensive magnitude index,with the 2022 summer-autumn Yangtze River hot drought being the hottest.Furthermore,Liang-Kleeman information flow-based causality analysis emphasizes key areas where the PDO and AMO influenced decadal variations in coverages of droughts and temperature extremes.We believe that the achievements in this study may offer new insights into sequential mechanism exploration and prediction-related issues. 展开更多
关键词 3D DBSCAN event-oriented drought set migration pattern compound climate extremes
下载PDF
E3 ubiquitin ligase PbrATL18 is a positive factor in pear resistance to drought and Colletotrichum fructicola infection 被引量:1
10
作者 Likun Lin Qiming Chen +4 位作者 Kaili Yuan Caihua Xing Qinghai Qiao Xiaosan Huang Shaoling Zhang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期698-712,共15页
The Arabidopsis Toxicos en Levadura(ATL)protein is a subfamily of the E3 ubiquitin ligases,which exists widely in plants and is extensively involved in plant growth and development.Although the ATL family has been ide... The Arabidopsis Toxicos en Levadura(ATL)protein is a subfamily of the E3 ubiquitin ligases,which exists widely in plants and is extensively involved in plant growth and development.Although the ATL family has been identified in other species,such as Arabidopsis,Oryza sativa,and grapevine,few reports on pear ATL gene families have been reported.In this study,92 PbrATL genes were identified and analyzed from the Pyrus breschneideri genome.Motif analysis and phylogenetic tree generation divided them into nine subgroups,and chromosome localization analysis showed that the 92 PbrATL genes were distributed in 16 of 17 pear chromosomes.Transcriptome data and quantitative real-time polymerase chain reaction(qRT-PCR)experiments demonstrated that PbrATL18,PbrATL41,and PbrATL88 were involved in both pear drought resistance and Colletotrichum fructicola infection.In addition,Arabidopsis thaliana overexpressing PbrATL18 showed greater resistance to drought stress than the wild type(WT),and PbrATL18-silenced pear seedlings showed greater sensitivity to drought and C.fructicola infection than the controls.PbrATL18 regulated plant resistance by regulating chitinase(CHI),phenylalanine ammonia-lyase(PAL),polyphenol oxidase(PPO),catalase(CAT),peroxidase(POD),and superoxide dismutase(SOD)activities.This study provided a reference for further exploring the functions of the PbrATL gene in drought resistance and C.fructicola infection. 展开更多
关键词 PEAR Colletotrichum fructicola Arabidopsis Toxicos en Levadura(ATL) drought stress
下载PDF
The ZOS7-MYB60 module confers drought-stress tolerance in rice 被引量:1
11
作者 Shubo Zhou Lihong He +5 位作者 Zubair Iqbal Yi Su Jihang Huang Lijing He Mingnan Qu Langtao Xiao 《The Crop Journal》 SCIE CSCD 2024年第5期1369-1378,共10页
Shanlan upland rice is an important landrace resource with high drought stress(DS)tolerance.Despite its importance,genes responsible for yield in Shanlan upland rice have yet to be discovered.Our previous study identi... Shanlan upland rice is an important landrace resource with high drought stress(DS)tolerance.Despite its importance,genes responsible for yield in Shanlan upland rice have yet to be discovered.Our previous study identified a drought-responsive zinc finger protein,ZOS7,as highly expressed in Shanlandao upland rice.However,the function of this gene in controlling drought tolerance remains largely unexplored.In this study,we found that overexpressing ZOS7,a drought-responsive zinc finger protein,in rice increased biomass and yield under drought stress.Co-overexpressing ZOS7 and MYB60,encoding a protein with which ZOS7 interacted,intensified the yield increase.ZOS7 and MYB60 appear to form a module that confers drought tolerance by regulating stomatal density and wax biosynthesis.The ZOS7-MYB60module could be used in molecular breeding for drought tolerance in rice. 展开更多
关键词 ZOS7 EPFL9 CER1 Stomatal density Wax biosynthesis TRANSCRIPTOME drought tolerance
下载PDF
Involvement of the ABA-and H_(2)O_(2)-Mediated Ascorbate-Glutathione Cycle in the Drought Stress Responses of Wheat Roots 被引量:1
12
作者 Mengyuan Li Zhongye Gao +2 位作者 Lina Jiang Leishan Chen Jianhui Ma 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期329-342,共14页
Abscisic acid(ABA),hydrogen peroxide(H_(2)O_(2)) and ascorbate(AsA)–glutathione(GSH)cycle are widely known for their participation in various stresses.However,the relationship between ABA and H_(2)O_(2) levels and th... Abscisic acid(ABA),hydrogen peroxide(H_(2)O_(2)) and ascorbate(AsA)–glutathione(GSH)cycle are widely known for their participation in various stresses.However,the relationship between ABA and H_(2)O_(2) levels and the AsA–GSH cycle under drought stress in wheat has not been studied.In this study,a hydroponic experiment was conducted in wheat seedlings subjected to 15%polyethylene glycol(PEG)6000–induced dehydration.Drought stress caused the rapid accumulation of endogenous ABA and H_(2)O_(2) and significantly decreased the number of root tips compared with the control.The application of ABA significantly increased the number of root tips,whereas the application of H_(2)O_(2) markedly reduced the number of root tips,compared with that under 15%PEG-6000.In addition,drought stress markedly increased the DHA,GSH and GSSG levels,but decreased the AsA levels,AsA/DHA and GSH/GSSG ratios compared with those in the control.The activities of the four enzymes in the AsA–GSH cycle were also markedly increased under drought stress,including glutathione reductase(GR),ascorbate peroxidase(APX),monodehydroascorbate reductase(MDHAR)and dehydroascorbate reductase(DHAR),compared with those in the control.However,the application of an ABA inhibitor significantly inhibited GR,DHAR and APX activities,whereas the application of an H_(2)O_(2) inhibitor significantly inhibited DHAR and MDHAR activities.Furthermore,the application of ABA inhibitor significantly promoted the increases of H_(2)O_(2) and the application of H_(2)O_(2) inhibitor significantly blocked the increases of ABA,compared with those under 15% PEG-6000.Taken together,the results indicated that ABA and H_(2)O_(2) probably interact under drought stress in wheat;and both of them can mediate drought stress by modulating the enzymes in AsA–GSH cycle,where ABA acts as the main regulator of GR,DHAR,and APX activities,and H_(2)O_(2) acts as the main regulator of DHAR and MDHAR activities. 展开更多
关键词 ABA H_(2)O_(2) AsA-GSH cycle drought stress wheat roots
下载PDF
Spatiotemporal changes of gross primary productivity and its response to drought in the Mongolian Plateau under climate change 被引量:1
13
作者 ZHAO Xuqin LUO Min +3 位作者 MENG Fanhao SA Chula BAO Shanhu BAO Yuhai 《Journal of Arid Land》 SCIE CSCD 2024年第1期46-70,共25页
Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation... Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation GPP provides insight into the spatiotemporal variation of terrestrial carbon sinks,aiding efforts to mitigate the detrimental effects of climate change.In this study,we utilized the precipitation and temperature data from the Climatic Research Unit,the standardized precipitation evapotranspiration index(SPEI),the standardized precipitation index(SPI),and the simulated vegetation GPP using the eddy covariance-light use efficiency(EC-LUE)model to analyze the spatiotemporal change of GPP and its response to different drought indices in the Mongolian Plateau during 1982-2018.The main findings indicated that vegetation GPP decreased in 50.53% of the plateau,mainly in its northern and northeastern parts,while it increased in the remaining 49.47%area.Specifically,meadow steppe(78.92%)and deciduous forest(79.46%)witnessed a significant decrease in vegetation GPP,while alpine steppe(75.08%),cropland(76.27%),and sandy vegetation(87.88%)recovered well.Warming aridification areas accounted for 71.39% of the affected areas,while 28.53% of the areas underwent severe aridification,mainly located in the south and central regions.Notably,the warming aridification areas of desert steppe(92.68%)and sandy vegetation(90.24%)were significant.Climate warming was found to amplify the sensitivity of coniferous forest,deciduous forest,meadow steppe,and alpine steppe GPP to drought.Additionally,the drought sensitivity of vegetation GPP in the Mongolian Plateau gradually decreased as altitude increased.The cumulative effect of drought on vegetation GPP persisted for 3.00-8.00 months.The findings of this study will improve the understanding of how drought influences vegetation in arid and semi-arid areas. 展开更多
关键词 gross primary productivity(GPP) climate change warming aridification areas drought sensitivity cumulative effect duration(CED) Mongolian Plateau
下载PDF
Drought-Tolerant Rice at Molecular Breeding Eras:An Emerging Reality
14
作者 ZHU Chengqi YE Yuxuan +3 位作者 QIU Tian HUANG Yafan YING Jifeng SHEN Zhicheng 《Rice science》 SCIE CSCD 2024年第2期179-189,共11页
Rice(Oryza sativa L.)stands as the most significantly influential food crop in the developing world,with its total production and yield stability affected by environmental stress.Drought stress impacts about 45%of the... Rice(Oryza sativa L.)stands as the most significantly influential food crop in the developing world,with its total production and yield stability affected by environmental stress.Drought stress impacts about 45%of the world’s rice area,affecting plants at molecular,biochemical,physiological,and phenotypic levels.The conventional breeding method,predominantly employing single pedigree selection,has been widely utilized in breeding numerous drought-tolerant rice varieties since the Green Revolution.With rapid progress in plant molecular biology,hundreds of drought-tolerant QTLs/genes have been identified and tested in rice crops under both indoor and field conditions.Several genes have been introgressed into elite germplasm to develop commercially accepted drought-tolerant varieties,resulting in the development of several drought-tolerant rice varieties through marker-assisted selection and genetically engineered approaches.This review provides up-to-date information on proof-of-concept genes and breeding methods in the molecular breeding era,offering guidance for rice breeders to develop drought-tolerant rice varieties. 展开更多
关键词 conventional breeding drought stress drought tolerant rice genetic engineering marker-assisted selection breeding
下载PDF
Natural variation of GmFNSII-2 contributes to drought resistance by modulating enzyme activity in soybean
15
作者 Huihui Gao Pengcheng Wei +12 位作者 Yongzhe Gu Pengbin Tang Yifan Shen Lei Yang Linxin Dong Haowei Zheng Kuo Shu Mayamiko Masangano Bin Dong Long Miao Jiajia Li Lijuan Qiu Xiaobo Wang 《The Crop Journal》 SCIE CSCD 2024年第2期529-539,共11页
As an essential crop that provides vegetable oil and protein,soybean(Glycine max(L.)Merr.)is widely planted all over the world.However,the scarcity of water resources worldwide has seriously impacted on the quality an... As an essential crop that provides vegetable oil and protein,soybean(Glycine max(L.)Merr.)is widely planted all over the world.However,the scarcity of water resources worldwide has seriously impacted on the quality and yield of soybean.To address this,exploring excellent genes for improving drought resistance in soybean is crucial.In this study,we identified natural variations of GmFNSII-2(flavone synthase II)significantly affect the drought resistance of soybeans.Through sequence analysis of GmFNSII-2 in 632 cultivated and 44 wild soybeans nine haplotypes were identified.The full-length allele GmFNSII-2^(C),but not the truncated allele GmFNSII-2^(A) possessing a nonsense nucleotide variation,increased enzyme activity.Further research found that GmDREB3,known to increase soybean drought resistance,bound to the promoter region of GmFNSII-2^(C).GmDREB3 positively regulated the expression of GmFNSII-2^(C),increased flavone synthase abundance and improved the drought resistance.Furthermore,a singlebase mutation in the GmFNSII-2^(C) promoter generated an additional drought response element(CCCCT),which had stronger interaction strength with GmDREB3 and increased its transcriptional activity under drought conditions.The frequency of drought-resistant soybean varieties with Hap 1(Pro:GmFNSII-2^(C))has increased,suggesting that this haplotype may be selected during soybean breeding.In summary,GmFNSII-2^(C) could be used for molecular breeding of drought-tolerant soybean. 展开更多
关键词 drought stress Flavone synthase GmFNSII-2 Natural variation drought response element
下载PDF
Influence of varied drought types on soil conservation service within the framework of climate change:insights from the Jinghe River Basin,China
16
作者 BAI Jizhou LI Jing +4 位作者 RAN Hui ZHOU Zixiang DANG Hui ZHANG Cheng YU Yuyang 《Journal of Arid Land》 SCIE CSCD 2024年第2期220-245,共26页
Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regio... Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regional environmental protection and sustainable development.However,there is little research on the coupling relationship between them.In this study,focusing on the Jinghe River Basin,China as a case study,we conducted a quantitative evaluation on meteorological,hydrological,and agricultural droughts(represented by the Standardized Precipitation Index(SPI),Standardized Runoff Index(SRI),and Standardized Soil Moisture Index(SSMI),respectively)using the Variable Infiltration Capacity(VIC)model,and quantified the soil conservation service using the Revised Universal Soil Loss Equation(RUSLE)in the historical period(2000-2019)and future period(2026-2060)under two Representative Concentration Pathways(RCPs)(RCP4.5 and RCP8.5).We further examined the influence of the three types of drought on soil conservation service at annual and seasonal scales.The NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP)dataset was used to predict and model the hydrometeorological elements in the future period under the RCP4.5 and RCP8.5 scenarios.The results showed that in the historical period,annual-scale meteorological drought exhibited the highest intensity,while seasonal-scale drought was generally weakest in autumn and most severe in summer.Drought intensity of all three types of drought will increase over the next 40 years,with a greater increase under the RCP4.5 scenario than under the RCP8.5 scenario.Furthermore,the intra-annual variation in the drought intensity of the three types of drought becomes smaller under the two future scenarios relative to the historical period(2000-2019).Soil conservation service exhibits a distribution pattern characterized by high levels in the southwest and southeast and lower levels in the north,and this pattern has remained consistent both in the historical and future periods.Over the past 20 years,the intra-annual variation indicated peak soil conservation service in summer and lowest level in winter;the total soil conservation of the Jinghe River Basin displayed an upward trend,with the total soil conservation in 2019 being 1.14 times higher than that in 2000.The most substantial impact on soil conservation service arises from annual-scale meteorological drought,which remains consistent both in the historical and future periods.Additionally,at the seasonal scale,meteorological drought exerts the highest influence on soil conservation service in winter and autumn,particularly under the RCP4.5 and RCP8.5 scenarios.Compared to the historical period,the soil conservation service in the Jinghe River Basin will be significantly more affected by drought in the future period in terms of both the affected area and the magnitude of impact.This study conducted beneficial attempts to evaluate and predict the dynamic characteristics of watershed drought and soil conservation service,as well as the response of soil conservation service to different types of drought.Clarifying the interrelationship between the two is the foundation for achieving sustainable development in a relatively arid and severely eroded area such as the Jinghe River Basin. 展开更多
关键词 meteorological drought hydrological drought agricultural drought soil conservation service Variable Infiltration Capacity(VIC)model Revised Universal Soil Loss Equation(RUSLE) Jinghe River Basin
下载PDF
Preface to the Special Issue on Causes, Impacts, and Predictability of Droughts for the Past, Present, and Future
17
作者 Tianbao ZHAO Aiguo DAI +1 位作者 Jianping HUANG Lixia ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期191-192,共2页
Drought is a recurring dry condition with below-normal precipitation and is often associated with warm temperatures or heatwaves. A drought event can develop slowly over several weeks or suddenly within days, commonly... Drought is a recurring dry condition with below-normal precipitation and is often associated with warm temperatures or heatwaves. A drought event can develop slowly over several weeks or suddenly within days, commonly under abnormal atmospheric conditions(e.g., quasi-stationary high-pressure systems), and can persist for weeks, months, or even years. 展开更多
关键词 drought within suddenly
下载PDF
Regional Climate Models in the Simulation of the Drought of the 1970’s and 1980’s Years in Senegal (In West Africa)
18
作者 Mamadou Sarr Adoum Mahamat Moussa +2 位作者 Malick Wade El Hadji Deme Bouya Diop 《Journal of Water Resource and Protection》 CAS 2024年第9期585-604,共20页
West Africa was hit by an unprecedented drought in the 1970’s and 1980’s years, with dramatic consequences for surface and groundwater resources. In the context of climate change, there are many studies for the pred... West Africa was hit by an unprecedented drought in the 1970’s and 1980’s years, with dramatic consequences for surface and groundwater resources. In the context of climate change, there are many studies for the prediction of the increase in the occurrence of these droughts. To predict this situation in the Senegalese region, it is necessary to use regional climate models, which carrying out the study. This work deals with the interest to examine the capacity of the RCMs (regional climate models) in order to reproduce the deficit on the 1970’s year rainfall in Senegal. In this work, we used daily precipitation data from five (5) regional climate models to characterize the droughts in Senegal by using the SPI (Standardized Precipitation Index) on different time scales (3, 6, 12 and 24 months). For this purpose, the index was calculated over two distinct periods: 1951-1969 and 1970-1990. The results show that the period 1970-1990 was drier than the period 1951-1969. For the zonal average, the results show that the North of Senegal was more affected by this deficit rainfall than the South part. The analysis of the interannual variability of rainfall for some stations in Senegal shows that the drought did not start at the same time throughout the zone. 展开更多
关键词 Climate Change drought SPI (Standardised Precipitation Index) Senegal
下载PDF
Nitrogen, Phosphorus, and Potassium Interactive Effects for Improving Drought Resistance on Mung Bean Varieties
19
作者 Zhichao Yin Yuhua He +3 位作者 Yurong Zhang Wenyun Guo Xiangli Xie Fengxiang Yin 《American Journal of Plant Sciences》 CAS 2024年第9期777-795,共19页
The planting areas of mung bean are mostly arid and semi-arid areas, and lack of irrigation conditions. Many studies have reported that fertilization can increase drought resistance. In our previous research, optimize... The planting areas of mung bean are mostly arid and semi-arid areas, and lack of irrigation conditions. Many studies have reported that fertilization can increase drought resistance. In our previous research, optimized nitrogen (N), phosphorus (P) and potassium (K) combined fertilization model was established in mung bean. In the present study, the optimal fertilization was conducted in pot trails, and mung bean varieties Bailv9 and Bailv11 were used as materials, while the four water regimes, and three fertilization ratios of F120 (optimal fertilization), F100 (conventional fertilization), F50 (half of conventional fertilization) treatments were set, to compare each fertilization ratio effects and non-fertilization condition under each water regimes respectively. Under different water conditions, the investigation of N, P, and K effects of optimal fertilization showed that the yield of Bailv9 was not sensitive to water stress and had strong drought resistance;their water sensitivity index and drought resistance coefficient were BaiLv9 as Di = 0.89 and DC = 0.79. The yield of Bailv11 was sensitive to water stress, and their drought resistance was weak;their water sensitivity index and drought resistance coefficient were BL11 Di = 1.76 DC = 0.59, and under different water treatment conditions, Bailv9 and Bailv11 all had the best yield and other related traits increase in the F120 fertilization mode compared with other fertilization and non-fertilization conditions, and the average yield increases were 31.56% and 28.08%, respectively. The pot trails conduct the drought stress treatments in mung bean varieties Bailv9, Bailv11, Bailv935 and Bailv985 to determine the function of NPK optimized fertilization for improving plants growth in drought stress condition. Compared with the mung bean varieties treated with F50, F100, and F120, the yield of Bailv9 increased by 56.20%, 81.27%, and 107.22%, respectively;compared with that of F0, the yield of Bailv11 increased by 10.18%, 19.42%, and 45.88%, respectively;Bailv935 increased by 26.52%, 61.90%, 74.16% respectively, and Bailv985 increased by 23.78%, 56.92%, 87.62% respectively. The significant performances of optimized fertilization were also verified in 20 mung bean varieties in our filed trails. The research establishes a theoretical basis for introducing the model into production practice in the next step. 展开更多
关键词 Mung Bean Water Sensitivity Fertilization Sensitivity Optimal Fertilization drought Improvement
下载PDF
Alternative Splicing of OsCYL4 Controls Drought Resistance via Regulating Water Loss and Reactive Oxygen Species-Scavenging in Rice
20
作者 SHA Gan SHEN Xin +7 位作者 WU Zini XU Xiaocan XU Xin TAN Yanping LIU Xinqiong TANG Xianyin WANG Chuntai QIN Yonghua 《Rice science》 SCIE CSCD 2024年第1期1-5,I0001-I0008,共13页
A rice cyclase gene,OsCYL4b,identified as an alternative splice variant of the cyclase gene OsCYL4a,is involved in the regulation of drought stress and oxidative response.Compared with OsCYL4a,OsCYL4b lacks the second... A rice cyclase gene,OsCYL4b,identified as an alternative splice variant of the cyclase gene OsCYL4a,is involved in the regulation of drought stress and oxidative response.Compared with OsCYL4a,OsCYL4b lacks the second exon,which is located in the conserved motif 3,and may be a functionally important site.Our results suggested that OsCYL4b was responsive to multiple abiotic stresses,and was localized to both the cytoplasm and plasma membrane.The overexpression of OsCYL4b resulted in significantly enhanced drought and osmotic stress tolerance,reduced water loss,and increased abscisic acid(ABA)content compared with the wild type(WT). 展开更多
关键词 drought Oxygen stress
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部