期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
An effective oxygen electrode based on Ir0.6Sn0.4O2 for PEM water electrolyzers 被引量:1
1
作者 Guang Jiang Hongmei Yu +5 位作者 Jinkai Hao Jun Chi Zhixuan Fan Dewei Yao Bowen Qin Zhigang Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期23-28,共6页
An effective oxygen evolution electrode with Ir0.6Sn0.4O2 was designed for proton exchange membrane(PEM)water electrolyzers.The anode catalyst layer exhibits a jagged structure with smaller particles and pores,which p... An effective oxygen evolution electrode with Ir0.6Sn0.4O2 was designed for proton exchange membrane(PEM)water electrolyzers.The anode catalyst layer exhibits a jagged structure with smaller particles and pores,which provide more active sites and mass transportation channels.The prepared IrSn electrode showed a cell voltage of 1.96 V at 2.0 A cm^-2 with Ir loading as low as 0.294 mg cm^-2.Furthermore,Ir Sn electrode with different anode catalyst loadings was investigated.The IrS n electrode indicates higher mass current and more stable cell voltage than the commercial Ir Black electrode at low loading. 展开更多
关键词 pem water electrolyzer OER electrode Low lr loading
下载PDF
Activation of iridium site by anchoring ruthenium atoms on defects for efficient anodic catalyst in polymer electrolyte membrane water electrolyzers
2
作者 Shiqian Du Ru Chen +9 位作者 Wei Chen Hongmei Gao Jianfeng Jia Zhaohui Xiao Chao Xie Hao Li Li Tao Jia Huo Yanyong Wang Shuangyin Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期260-266,I0007,共8页
1.Introduction Hydrogen is an ideal energy carrier to tackle the energy crisis and greenhouse effect,because of its high energy density and low emission.The production,storage and transportation of hydrogen are key fa... 1.Introduction Hydrogen is an ideal energy carrier to tackle the energy crisis and greenhouse effect,because of its high energy density and low emission.The production,storage and transportation of hydrogen are key factors to the practical application of hydrogen energy.As the scientific and technological understanding of the electrochemical devices was advancing in the past few decades,water electrolyzers based on the proton exchange membrane (PEM) have attracted much focus for its huge potential on the production of hydrogen via water splitting.PEM electrolyzers use perfluorinated sulfonic acid (PFSA) based membranes as the electrolyte. 展开更多
关键词 pem water electrolyzers Oxygen evolution reaction ELECTROCATALYSTS Defect engineering
下载PDF
微液滴限域合成和调控空心多孔Ir基电解水催化剂及其传质促进作用
3
作者 刘丽 黄婷 +5 位作者 杨晓良 柳守杰 汪顺生 项琳琳 王功名 蒯龙 《Science Bulletin》 SCIE EI CAS CSCD 2024年第8期1081-1090,共10页
Maximally exploiting the active sites of iridium catalysts is essential for building low-cost proton exchange membrane(PEM)electrolyzers for green H_(2)production.Herein,we report a novel microdrop-confined fusion/bla... Maximally exploiting the active sites of iridium catalysts is essential for building low-cost proton exchange membrane(PEM)electrolyzers for green H_(2)production.Herein,we report a novel microdrop-confined fusion/blasting(MCFB)strategy for fabricating porous hollow IrO_(1-x)microspheres(IrO_(1-x)-PHM)by introducing explosive gas mediators from a NaNO_(3)/glucose mixture.Moreover,the developed MCFB strategy is demonstrated to be general for synthesizing a series of Ir-based composites,including Ir-Cu,Ir-Ru,Ir-Pt,Ir-Rh,Ir-Pd,and Ir-Cu-Pd and other noble metals such as Rh,Ru,and Pt.The hollow structures can be regulated using different organics with NaNO_(3).The assembled PEM electrolyzer with IrO_(1-x)-PHM as the anode catalyst(0.5 mg/cm^(2))displays an impressive polarization voltage of 1.593and 1.726 V at current densities of 1 and 2 A/cm^(2),respectively,outperforming commercial IrO_(x)catalysts and most of the ever-reported iridium catalysts with such low catalyst loading.More importantly,the breakdown of the polarization loss indicates that the improved performance is due to the facilitated mass transport induced by the hollowness.This study offers a versatile platform for fabricating efficient Irbased catalysts for PEM electrolyzers and beyond. 展开更多
关键词 Microdrop-confined synthesis Porous hollow microspheres pem electrolyzer Water splitting Mass transfer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部