期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A review of effective strides in amelioration of the biocompatibility of PEO coatings on Mg alloys 被引量:4
1
作者 Arash Fattah-alhosseini Razieh Chaharmahali +3 位作者 Kazem Babaei Meisam Nouri Mohsen K.Keshavarz Mosab Kaseem 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第9期2354-2383,共30页
Recently,developing bioactive and biocompatible materials based on Mg and Mg-alloys for implant applications has drawn attention among researchers owing to their suitable body degradability.Implementing Mg and its all... Recently,developing bioactive and biocompatible materials based on Mg and Mg-alloys for implant applications has drawn attention among researchers owing to their suitable body degradability.Implementing Mg and its alloys reduces the risk of long-term incompatibility with tissues because of their close mechanical properties and no need for re-operation to remove the implant.Nevertheless,the degradation rate of the implant needs to be controlled because production of hydrogen gas and accumulation of its bubbles increases local pH around the implants.To confine the integrity of implants and the body,the corrosion concern in the body fluid requires to be addressed.Surface modification as one of the effective strategies can improve corrosion resistance.Besides,it creates a suitable surface for bone grafting and cell growth.The development of proper surface-coated implants needs appropriate techniques and approaches.Plasma electrolytic oxidation(PEO)coating can provide long-term protection by providing a ceramic layer and improving the implant’s biocompatibility.Herein,a general review of in-vivo and in-vitro evaluation of PEO coatings on Mg and Mg-alloys has been carried out.Recent advances in surface modification on Mg and Mg-alloys have been discussed,however,the need for reliable laboratory models to predict in-vivo degradation is still valid. 展开更多
关键词 Mg alloys BIODEGRADATION Surface modification In-vivo In-vitro peo coatings
下载PDF
Investigation of ZrO2 nanoparticles concentration and processing time effect on the localized PEO coatings formed on AZ91 alloy 被引量:10
2
作者 Zeeshan Ur Rehman Dongjin Choi 《Journal of Magnesium and Alloys》 SCIE 2019年第4期555-565,共11页
AZ91 Mg alloy was treated through a new localized PEO(Plasma Electrolytic Oxidation)coating approach,using electrolyte solutions with varying ZrO2 nanoparticles concentration(2-8 g/L)and processing times.With increase... AZ91 Mg alloy was treated through a new localized PEO(Plasma Electrolytic Oxidation)coating approach,using electrolyte solutions with varying ZrO2 nanoparticles concentration(2-8 g/L)and processing times.With increase in the ZrO2 concentration,several microstructural changes were observed including;formation of cluster-type structure,damage to the inner layers(∼30 min)and sealing of defects.Corrosion analysis of the final coatings was carried out using potentiodynamic polarization,electrochemical impedance spectroscopy and post-corrosion analysis.It was explored that highest corrosion resistance(Rp∼81.17 kΩcm^2)of the coatings was obtained for ZrO2∼2 g/L.However,higher concentration of the ZrO2 nanoparticles caused weak crystalline coating structure,due to unstable and lower intensity discharges,thus failed to offer high corrosion resistance performance. 展开更多
关键词 Magnesium alloy peo coating ZRO2 Corrosion Nanoparticles addition
下载PDF
Microstructure,wear and corrosion performance of plasma electrolytic oxidation coatings formed on D16T Al alloy
3
作者 Wan-Ying Liu Ying Liu +4 位作者 Carsten Blawert Mikhail-L.Zheludkevich Chun-Ling Fan Mohd Talha Yuan-Hua Lin 《Rare Metals》 SCIE EI CAS CSCD 2020年第12期1425-1439,共15页
The plasma electrolytic oxidation(PEO)coatings were produced on D16 T Al alloy in the aluminate and silicate electrolyte with and without graphene.The phase composition,microstructure and elemental distribution of the... The plasma electrolytic oxidation(PEO)coatings were produced on D16 T Al alloy in the aluminate and silicate electrolyte with and without graphene.The phase composition,microstructure and elemental distribution of the coatings were tested by X-ray diffraction(XRD),scanning electron microscope(SEM)and energy dispersive X-ray spectroscopy(EDX).The wear and corrosion resistance of PEO coatings were evaluated by dry sliding wear tests and electrochemical impedance spectroscopy(EIS).The morphology feature of the wear tracks was compared and analyzed by SEM and three-dimensional microscope.The results demonstrate that the structure,wear and corrosion resistance of PEO coatings with graphene are better than that of PEO coatings without graphene.The coating fabricated in the aluminate electrolyte with graphene exhibited the lowest roughness.The coated samples formed in silicate electrolyte with graphene displayed the thickest,densest and the most compact coating.It exhibited the best wear and corrosion resistance due to the incorporation mode of graphene in the coatings.The mechanism of graphene improving the wear and corrosion resistance of PEO coating was further discussed.In summary,the comprehensive performances of PEO coatings formed in silicate electrolyte on D16 T Al alloy are superior to that produced in aluminate electrolyte. 展开更多
关键词 peo coatings D16T Al alloy GRAPHENE WEAR CORROSION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部