以聚环氧乙烷/高氯酸锂络合物(PEO/L iC lO4)为基体,前驱体正硅酸乙酯(TEOS)在基体中水解缩合的同时加入偶联剂KH560改性原位生成的S iO2,制备了PEO/L iC lO4/KH560-S iO2聚电解质膜,采用SEM、AFM、DSC和交流阻抗方法研究了改性前后聚...以聚环氧乙烷/高氯酸锂络合物(PEO/L iC lO4)为基体,前驱体正硅酸乙酯(TEOS)在基体中水解缩合的同时加入偶联剂KH560改性原位生成的S iO2,制备了PEO/L iC lO4/KH560-S iO2聚电解质膜,采用SEM、AFM、DSC和交流阻抗方法研究了改性前后聚电解质膜的表面形貌、结晶度和电导率。结果表明,改性S iO2在PEO中分散均匀且粒径仅为35 nm,不同S iO2含量下改性后的聚电解质膜电导率均比改性前明显提高。当S iO2质量分数为10%时,PEO/L iC lO4/KH560-S iO2的电导率达到最大值4.8×10-5S/cm(30℃)。展开更多
(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs)were prepared by in-situ reaction,in which ethyl-orthosilicate(TEOS)was catalyzed by HCl and NH3.H2O,respectively.The ionic conductivity,the contact angle and the ...(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs)were prepared by in-situ reaction,in which ethyl-orthosilicate(TEOS)was catalyzed by HCl and NH3.H2O,respectively.The ionic conductivity,the contact angle and the morphology of inorganic particles in the CPEs were investigated by AC impedance spectra,contact angle method and TEM.The conductivities of acid-catalyzed CPE and alkali-catalyzed CPE are 2.2×10-5and 1.1×10-5S/cm respectively at 30℃.The results imply that the catalyst plays an important role in the structure of in-situ preparation of SiO2,and influences the surface energy and conductivity of CPE films directly.Meanwhile,the ionic conductivity is related to the surface energy.展开更多
The title organic inorganic hybrid composite has been prepared by a sol gel method from allyl alcohol and tetraethoxysilicane. The IR spectra, thermal property and impact strength of the composite are reported.
A novel polymer/SiO2 hybrid emulsion(PAES)was prepared by directly mixing colloidal silica with polyacrylate emulsion(PAE)modified by a saline coupling agent.The sol-gel-derived thin films were obtained by addition of...A novel polymer/SiO2 hybrid emulsion(PAES)was prepared by directly mixing colloidal silica with polyacrylate emulsion(PAE)modified by a saline coupling agent.The sol-gel-derived thin films were obtained by addition of co-solvents into the PAES.The effects ofγ-methacryloxypropyltrimethoxysilane(KH-570)content and co-solvent on the properties of PAES films were investigated.Dynamic laser scattering(DLS)data indicate that the average diameter of PAES(96 nm)is slightly larger than that of PAE(89 nm).Transmission electron microscopy (TEM)photo discloses that colloidal silica particles are dispersed uniformly around polyacrylate particles and some of the colloidal silica particles are adsorbed on the surface of PAE particles.The crosslinking degree data and Fourier transform infrared(FT-IR)spectra confirm that the chemical structure of the PAES is changed to form Si-O-Si-polymer crosslinking networks during the film formation.Atomic force microscope(AFM)photos show the solvent induced sol-gel process of colloidal silica and the Si-based polymer distribution on the film surface of the dried PAES.Thermogravimetric analysis(TGA)curves demonstrate that the PAES films display much better thermal stability than PAE.展开更多
文摘以聚环氧乙烷/高氯酸锂络合物(PEO/L iC lO4)为基体,前驱体正硅酸乙酯(TEOS)在基体中水解缩合的同时加入偶联剂KH560改性原位生成的S iO2,制备了PEO/L iC lO4/KH560-S iO2聚电解质膜,采用SEM、AFM、DSC和交流阻抗方法研究了改性前后聚电解质膜的表面形貌、结晶度和电导率。结果表明,改性S iO2在PEO中分散均匀且粒径仅为35 nm,不同S iO2含量下改性后的聚电解质膜电导率均比改性前明显提高。当S iO2质量分数为10%时,PEO/L iC lO4/KH560-S iO2的电导率达到最大值4.8×10-5S/cm(30℃)。
文摘(PEO)8LiClO4-SiO2 composite polymer electrolytes(CPEs)were prepared by in-situ reaction,in which ethyl-orthosilicate(TEOS)was catalyzed by HCl and NH3.H2O,respectively.The ionic conductivity,the contact angle and the morphology of inorganic particles in the CPEs were investigated by AC impedance spectra,contact angle method and TEM.The conductivities of acid-catalyzed CPE and alkali-catalyzed CPE are 2.2×10-5and 1.1×10-5S/cm respectively at 30℃.The results imply that the catalyst plays an important role in the structure of in-situ preparation of SiO2,and influences the surface energy and conductivity of CPE films directly.Meanwhile,the ionic conductivity is related to the surface energy.
文摘The title organic inorganic hybrid composite has been prepared by a sol gel method from allyl alcohol and tetraethoxysilicane. The IR spectra, thermal property and impact strength of the composite are reported.
基金Supported by the Program for New Century Excellent Talents in University(NCET-08-0204) National Natural Science Foundation of China(20976060) the Scientific Research Foundation for the Returned Overseas Chinese Scholars State Edu-cation Ministry (China)
文摘A novel polymer/SiO2 hybrid emulsion(PAES)was prepared by directly mixing colloidal silica with polyacrylate emulsion(PAE)modified by a saline coupling agent.The sol-gel-derived thin films were obtained by addition of co-solvents into the PAES.The effects ofγ-methacryloxypropyltrimethoxysilane(KH-570)content and co-solvent on the properties of PAES films were investigated.Dynamic laser scattering(DLS)data indicate that the average diameter of PAES(96 nm)is slightly larger than that of PAE(89 nm).Transmission electron microscopy (TEM)photo discloses that colloidal silica particles are dispersed uniformly around polyacrylate particles and some of the colloidal silica particles are adsorbed on the surface of PAE particles.The crosslinking degree data and Fourier transform infrared(FT-IR)spectra confirm that the chemical structure of the PAES is changed to form Si-O-Si-polymer crosslinking networks during the film formation.Atomic force microscope(AFM)photos show the solvent induced sol-gel process of colloidal silica and the Si-based polymer distribution on the film surface of the dried PAES.Thermogravimetric analysis(TGA)curves demonstrate that the PAES films display much better thermal stability than PAE.