The insurmountable charge transfer impedance at the Li metal/solid polymer electrolytes(SPEs)interface at room temperature as well as the ascending risk of short circuits at the operating temperature higher than the m...The insurmountable charge transfer impedance at the Li metal/solid polymer electrolytes(SPEs)interface at room temperature as well as the ascending risk of short circuits at the operating temperature higher than the melting point,dominantly limits their applications in solid-state batteries(SSBs).Although the inorganic filler such as CeO_(2)nanoparticle content of composite solid polymer electrolytes(CSPEs)can significantly reduce the enormous charge transfer impedance at the Li metal/SPEs interface,we found that the required content of CeO_(2)nanoparticles in SPEs varies for achieving a decent interfacial charge transfer impedance and the bulk ionic conductivity in CSPEs.In this regard,a sandwich-type composited solid polymer electrolyte with a 10%CeO_(2)CSPEs interlayer sandwiched between two 50%CeO_(2)CSPEs thin layers(sandwiched CSPEs)is constructed to simultaneously achieve low charge transfer impedance and superior ionic conductivity at 30℃.The sandwiched CSPEs allow for stable cycling of Li plating and stripping for 1000 h with 129 mV polarized voltage at 0.1 mA cm^(-2)and 30℃.In addition,the LiFePO_(4)/Sandwiched CSPEs/Li cell also exhibits exceptional cycle performance at 30℃and even elevated120℃without short circuits.Constructing multi-layered CSPEs with optimized contents of the inorganic fillers can be an efficient method for developing all solid-state PEO-based batteries with high performance at a wide range of temperatures.展开更多
Composite solid electrolytes(CSEs)have emerged as promising candidates for safe and high-energy–density solid-state lithium metal batteries(SSLMBs).However,concurrently achieving exceptional ionic conductivity and in...Composite solid electrolytes(CSEs)have emerged as promising candidates for safe and high-energy–density solid-state lithium metal batteries(SSLMBs).However,concurrently achieving exceptional ionic conductivity and interface compatibility between the electrolyte and electrode presents a significant challenge in the development of high-performance CSEs for SSLMBs.To overcome these challenges,we present a method involving the in-situ polymerization of a monomer within a self-supported porous Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZT)to produce the CSE.The synergy of the continuous conductive LLZT network,well-organized polymer,and their interface can enhance the ionic conductivity of the CSE at room temperature.Furthermore,the in-situ polymerization process can also con-struct the integration and compatibility of the solid electrolyte–solid electrode interface.The synthesized CSE exhibited a high ionic conductivity of 1.117 mS cm^(-1),a significant lithium transference number of 0.627,and exhibited electrochemical stability up to 5.06 V vs.Li/Li+at 30℃.Moreover,the Li|CSE|LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cell delivered a discharge capacity of 105.1 mAh g^(-1) after 400 cycles at 0.5 C and 30℃,corresponding to a capacity retention of 61%.This methodology could be extended to a variety of ceramic,polymer electrolytes,or battery systems,thereby offering a viable strategy to improve the electrochemical properties of CSEs for high-energy–density SSLMBs.展开更多
Composite solid electrolytes(CSEs)with poly(ethylene oxide)(PEO)have become fairly prevalent for fabricating high-performance solid-state lithium metal batteries due to their high Li~+solvating capability,flexible pro...Composite solid electrolytes(CSEs)with poly(ethylene oxide)(PEO)have become fairly prevalent for fabricating high-performance solid-state lithium metal batteries due to their high Li~+solvating capability,flexible processability and low cost.However,unsatisfactory room-temperature ionic conductivity,weak interfacial compatibility and uncontrollable Li dendrite growth seriously hinder their progress.Enormous efforts have been devoted to combining PEO with ceramics either as fillers or major matrix with the rational design of two-phase architecture,spatial distribution and content,which is anticipated to hold the key to increasing ionic conductivity and resolving interfacial compatibility within CSEs and between CSEs/electrodes.Unfortunately,a comprehensive review exclusively discussing the design,preparation and application of PEO/ceramic-based CSEs is largely lacking,in spite of tremendous reviews dealing with a broad spectrum of polymers and ceramics.Consequently,this review targets recent advances in PEO/ceramicbased CSEs,starting with a brief introduction,followed by their ionic conduction mechanism,preparation methods,and then an emphasis on resolving ionic conductivity and interfacial compatibility.Afterward,their applications in solid-state lithium metal batteries with transition metal oxides and sulfur cathodes are summarized.Finally,a summary and outlook on existing challenges and future research directions are proposed.展开更多
This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly a...This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly ash(FA),and analyzed its mechanical properties,hydration mechanism,and retardation mechanism.The effects of retarders on the hydration products,mechanical properties,and hydration kinetics of ACCM were investigated using XRD,SEM,FTIR,EDS,and thermoactive microcalorimetry.The results showed that Na_(2)B_(4)O_(7)·10H_(2)O(B)delayed the exotherm during the alkali activation process and could effectively delay the setting time of ACCM,but the mechanical properties were slightly decreased.The setting time of ACCM increased with the increase in SG content,but the mechanical properties of ACCM decreased with the increase in SG content.C1_(2)H_(22)O_(11)(CHO)could effectively delay the hydration reaction of ACCM and weakly enhanced the compressive strength.H_(3)PO_(4)(HP)at a concentration of 0.05 mol/L had a certain effect on ACCM retardation,but HP at a concentration of 0.07 and 0.09 mol/L had an effect of promoting the setting and hardening time of ACCM.展开更多
The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the curren...The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the currently used liquid carbonate compounds in commercial lithium-ion battery electrolytes pose potential safety hazards such as leakage,swelling,corrosion,and flammability.Solid electrolytes can be used to mitigate these risks and create a safer lithium battery.Furthermore,high-energy density can be achieved by using solid electrolytes along with high-voltage cathode and metal lithium anode.Two types of solid electrolytes are generally used:inorganic solid electrolytes and polymer solid electrolytes.Inorganic solid electrolytes have high ionic conductivity,electrochemical stability window,and mechanical strength,but suffer from large solid/solid contact resistance between the electrode and electrolyte.Polymer solid electrolytes have good flexibility,processability,and contact interface properties,but low room temperature ionic conductivity,necessitating operation at elevated temperatures.Composite solid electrolytes(CSEs) are a promising alternative because they offer light weight and flexibility,like polymers,as well as the strength and stability of inorganic electrolytes.This paper presents a comprehensive review of recent advances in CSEs to help researchers optimize CSE composition and interactions for practical applications.It covers the development history of solid-state electrolytes,CSE properties with respect to nanofillers,morphology,and polymer types,and also discusses the lithium-ion transport mechanism of the composite electrolyte,and the methods of engineering interfaces with the positive and negative electrodes.Overall,the paper aims to provide an outlook on the potential applications of CSEs in solid-state lithium batteries,and to inspire further research aimed at the development of more systematic optimization strategies for CSEs.展开更多
Element W can effectively improve the density of energetic structural materials. However, W is an inert element and does not combust in air. To change the reaction characteristics of W, 60 at.% Al was introduced into ...Element W can effectively improve the density of energetic structural materials. However, W is an inert element and does not combust in air. To change the reaction characteristics of W, 60 at.% Al was introduced into W through mechanical alloying. XRD analysis shows that after 50 h of ball milling, the diffraction peak of Al completely disappears and W(Al60) super-saturated solid solution powder is obtained. Further observation by HAADF and HRTEM reveals that the W(Al60) super-saturated solid solution powder is a mixture of solid solution and amorphous phase. Based on the good thermal stability of W(Al60) alloy powder below 1000℃, W(Al60)-Al composite was synthesized by hot pressing process.Impact initiation experiments suggest that the W(Al60)-Al composite has excellent reaction characteristics, and multiple types of tungsten oxides are detected in the reaction products, showing that the modified W is combustible in air. Due to the combustion of tungsten, the energy release rate of the W(Al60)-Al composite at speed of 1362 m/s reaches 2.71 kJ/g.展开更多
Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid el...Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid electrolyte is synthesized by filtrating–NH 2 functionalized metal-organic framework nanosheets and then being threaded with poly(ethylene oxide)chains induced by the hydrogen-bonding interaction from–NH_(2) groups.It is demonstrated that the threaded poly(ethylene oxide)chains lock the adjacent metal-organic framework nanosheets,giving highly enhanced structural stability(Young’s modulus,1.3 GPa)to 7.5-μm-thick laminar composite solid electrolyte.Importantly,these poly(ethylene oxide)chains with stretching structure serve as continuous conduction pathways along the chains in pores.It makes the non-conduction laminar metal-organic framework electrolyte highly conductive:3.97×10^(−5) S cm^(−1) at 25℃,which is even over 25 times higher than that of pure poly(ethylene oxide)electrolyte.The assembled lithium cell,thus,acquires superior cycling stability,initial discharge capacity(148 mAh g^(−1) at 0.5 C and 60℃),and retention(94% after 150 cycles).Besides,the pore size of nanosheet is tailored(24.5–40.9˚A)to evaluate the mechanisms of chain conformation and ion transport in confined space.It shows that the confined pore only with proper size could facilitate the stretching of poly(ethylene oxide)chains,and meanwhile inhibit their disorder degree.Specifically,the pore size of 33.8˚A shows optimized confinement effect with trans-poly(ethylene oxide)and cis-poly(ethylene oxide)conformation,which offers great significance in ion conduction.Our design of poly(ethylene oxide)-threaded architecture provides a platform and paves a way to the rational design of next-generation high-performance porous electrolytes.展开更多
Solid carburization was employed to improve the hardness of Ti-6Al-4V alloy and (TiB+La2O3)/Ti composite. The samples wrapped in graphite powder were placed in sealed quartz tubes, followed by solid carburization a...Solid carburization was employed to improve the hardness of Ti-6Al-4V alloy and (TiB+La2O3)/Ti composite. The samples wrapped in graphite powder were placed in sealed quartz tubes, followed by solid carburization at 1227 K for 24 h. Microstructure and phase analysis indicated that TiC reinforcements and Ti-C solid solutions were introduced after solid carburization. Moreover, the volume fraction of equiaxedα-Ti phase in diffusion layer decreased obviously with increasing sample depth. Hardness testing results indicated that both the carburized surfaces performed significant improvement of about 100% in micro-hardness compared with untreated materials. The variation of carbon contents with increasing sample depth resulted in a hardened layer of 300 μm in the carburized samples. Meanwhile, slight influence on the internal microstructure and hardness indicated that solid carburization was an effective method in strengthening the surface of titanium alloy and titanium matrix composite.展开更多
Lithium (Li) metal with an ultrahigh specific theoretical capacity and the lowest reduction potential is strongly considered as a promising anode for high-energy-density batteries. However, uncontrolled lithium dendri...Lithium (Li) metal with an ultrahigh specific theoretical capacity and the lowest reduction potential is strongly considered as a promising anode for high-energy-density batteries. However, uncontrolled lithium dendrites and infinite volume change during repeated plating/stripping cycles hinder its practical applications immensely. Herein, a house-like Li anode (housed Li) was designed to circumvent the above issues. The house matrix was composed of carbon fiber matrix and affords a stable structure to relieve the volume change. An artificial solid electrolyte layer was formed on composite Li metal, just like the roof of a house, which facilitates uniform Li ions diffusion and serves as a physical barrier against electrolyte corrosion. With the combination of solid electrolyte layer and matrix in the composite Li metal anode, both dendrite growth and volume expansion are remarkably inhibited. The housed Li|LiFePO4 batteries exhibited over 95% capacity retention after 500 cycles at 1.0 C in coin cell and 85% capacity retention after 80 cycles at 0.5 C in pouch cell. The rationally combination of solid electrolyte layer protection and housed framework in one Li metal anode sheds fresh insights on the design principle of a safe and long-lifespan Li metal anode for Li metal batteries.展开更多
Based on the dynamic loading(1-100 s^(-1)) experiments under different temperatures(223-298 K) and stress states, uniaxial and biaxial strength criterion of a Hydroxyl-terminated polybutadiene(HTPB)based composite sol...Based on the dynamic loading(1-100 s^(-1)) experiments under different temperatures(223-298 K) and stress states, uniaxial and biaxial strength criterion of a Hydroxyl-terminated polybutadiene(HTPB)based composite solid propellant were further investigated. These experiments were conducted through the use of a new uniaxial INSTRON testing machine, different new designed gripping apparatus and samples with different configurations. According to the test results, dynamic uniaxial tensile strength criterion of the propellant was directly constructed with the master curve of the uniaxial maximum tensile stress. Whereas, a new method was proposed to determine the dynamic uniaxial compressive strength of the propellant in this study. Then uniaxial compressive strength criterion of the propellant was constructed based on the related master curve. Moreover, it found that the uniaxial tensilecompressive strength ratio of the propellant is more sensitive to loading temperature under the test conditions. The value of this parameter is about 0.4 at room temperature, and it reduces to 0.2-0.3 at low temperatures. Finally, the theoretical biaxial strength criterion of HTPB propellant under dynamic loading was constructed with the unified strength theory, the uniaxial strength and the typical biaxial tensile strength. In addition, the theoretical limit lines of the principal stress plane for the propellant under dynamic loading at different temperatures were further plotted, and the scope of the limit line increases with decreasing temperature.展开更多
High ionic conductivity and superior interfacial stability of solid electrolytes at the electrodes are crucial factors for high-performance all-solid-state sodium batteries. Herein, a composite solid electrolyte Na3PS...High ionic conductivity and superior interfacial stability of solid electrolytes at the electrodes are crucial factors for high-performance all-solid-state sodium batteries. Herein, a composite solid electrolyte Na3PS4-polyethylene oxide is synthesized by the solution-phase reaction method with an improved ionic conductivity up to 9.4 × 10-5 S/cm at room temperature. Moreover, polyethylene oxide polymer layer is wrapped homogeneously on the surface of Na3PS4 particles, which could effectively avoid the direct contact between Na3PS4 electrolyte and sodium metal, thus alleviate their side reactions. We demonstrate that all-solid-state battery SnS2/Na with the composite solid electrolyte Na3PS4-polyethylene oxide delivers an enhanced electrochemical performance with 230 m Ah/g after 40 cycles.展开更多
Solid polymer electrolytes(SPEs), such as polyethylene oxide(PEO), are characteristic of good flexibility and excellent processability, but they suffer from low ionic conductivity and small Li+transference number at a...Solid polymer electrolytes(SPEs), such as polyethylene oxide(PEO), are characteristic of good flexibility and excellent processability, but they suffer from low ionic conductivity and small Li+transference number at ambient temperature. Inorganic solid electrolytes(ISEs), garnet-type Li7La3Zr2O12 and its derivatives(LLZO-based) in particular, possess high ionic conductivity at room temperature, wide electrochemical stability window, large Li+transference number as well as good stability against Li metal anode.Nevertheless, lithium dendrites growth, interfacial contact issue and brittle nature of LLZO-based ceramic electrolytes prevent their practical applications. In response to these shortcomings, LLZO-based/polymer solid composite electrolytes(SCEs), taking complementary advantages of two kinds of electrolytes, and thus simultaneously improving the electrode wettability, ionic conductivity and mechanical strength, have been made to develop high-performance SCEs in recent years. Herein, the intrinsic properties and research progress of LLZO-based/polymer SCEs, including LLZO-based/PEO SCEs(LLZO-based/PEO SCEs with uniform dispersion of LLZO-based fillers and LLZO-based/PEO layered SCEs) and LLZO-based/novel polymers SCEs, are summarized. Besides, comprehensive updates on their applications in solid-state batteries are also presented. Finally, challenges and perspectives of LLZO-based/polymer SCEs for advanced allsolid-state lithium batteries(ASSLBs) are suggested. This review paper aims to provide systematic research progress of LLZO-based/polymer SCEs, to allow for more efficient and target-oriented research on improving LLZO-based/polymer SCEs.展开更多
Effects of metal (Ni, Cu, Al) and composite metal (NiB, NiCu, NiCuB) nanopowders on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellant ammonium perchlorate/hydroxyterminated polybuta...Effects of metal (Ni, Cu, Al) and composite metal (NiB, NiCu, NiCuB) nanopowders on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellant ammonium perchlorate/hydroxyterminated polybutadiene (AP/HTPB) were studied by thermal analysis (DTA). The results show that metal and composite metal nanopowders all have good catalytic effects on the thermal decomposition of AP and AP/HTPB composite solid propellant. The effects of metal nanopowders on the thermal decomposition of AP are less than those of the composite metal nanopowders. The effects of metal and composite metal nanopowders on the thermal decomposition of AP are different from those on the thermal decomposition of the AP/HTPB composite solid propellant.展开更多
Composite solid propellants(CSPs) have widely been used as main energy source for propelling the rockets in both space and military applications. Internal ballistic parameters of rockets like characteristic exhaust ve...Composite solid propellants(CSPs) have widely been used as main energy source for propelling the rockets in both space and military applications. Internal ballistic parameters of rockets like characteristic exhaust velocity, specific impulse, thrust, burning rate etc., are measured to assess and control the performance of rocket motors. The burn rate of solid propellants has been considered as most vital parameter for design of solid rocket motors to meet specific mission requirements. The burning rate of solid propellants can be tailored by using different constituents, extent of oxidizer loading and its particle size and more commonly by incorporating suitable combustion catalysts. Various metal oxides(MOs),complexes, metal powders and metal alloys have shown positive catalytic behaviour during the combustion of CSPs. These are usually solid-state catalysts that play multiple roles in combustion of CSPs such as reduction in activation energy, enhancement of rate of reaction, modification of sequences in reaction-phase, influence on condensed-phase combustion and participation in combustion process in gas-phase reactions. The application of nanoscale catalysts in CSPs has increased considerably in recent past due to their superior catalytic properties as compared to their bulk-sized counterparts. A large surface-to-volume ratio and quantum size effect of nanocatalysts are considered to be plausible reasons for improving the combustion characteristics of propellants. Several efforts have been made to produce nanoscale combustion catalysts for advanced propellant formulations to improve their energetics. The work done so far is largely scattered. In this review, an effort has been made to introduce various combustion catalysts having at least a metallic entity. Recent developments of nanoscale combustion catalysts with their specific merits are discussed. The combustion chemistry of a typical CSP is briefly discussed for providing a better understanding on role of combustion catalysts in burning rate enhancement. Available information on different types of combustion nanocatalysts is also presented with critical comments.展开更多
Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact l...Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature.展开更多
All-solid-state lithium battery(ASLB)based on sulfide-based electrolyte is considered to be a candidate for the next-generation high-energy storage system.Despite the high ionic conductivity of sulfide solid electroly...All-solid-state lithium battery(ASLB)based on sulfide-based electrolyte is considered to be a candidate for the next-generation high-energy storage system.Despite the high ionic conductivity of sulfide solid electrolyte,the poor interfacial stability(mechanically and chemically)between active materials and sulfide solid electrolytes in composite cathodes leads to inferior electrochemical performances,which impedes the practical application of sulfide electrolytes.In the past years,various of strategies have been carried out to achieve an interface with low impedance in the composite cathodes.Herein,a review of recent progress of composite cathodes for all-solid-state sulfide-based lithium batteries is summarized,including the interfacial issues,design strategies,fabrication methods,and characterization techniques.Finally,the main challenges and perspectives of composite cathodes for high-performance all-solidstate batteries are highlighted for future development.展开更多
The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount o...The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount of data exists on the solid fraction-temperature re- lationship in A356 alloy, information regarding the solid fraction evolution characteristics of A356-TiB2 composites is scarce. The present article establishes the temperature-solid fraction correlation in A356 alloy and A356-xTiB2 (x = 2.5wt% and 5wt%) composites using dif- ferential thermal analysis (DTA). The DTA results indicate that the solidification characteristics of the composites exhibited a variation of 2℃ and 3℃ in liquidus temperatures and a variation of 3℃ and 5℃ in solidus temperatures with respect to the base alloy. Moreover, the eutectic growth temperature and the solid fraction(fs) vs. temperature characteristics of the composites were found to be higher than those of the base alloy. The investigation revealed that in-situ formed TiB2 particles in the molten metal introduced more nucleation sites and reduced undercooling.展开更多
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ...The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.展开更多
Al-7graphite composite was processed using Al-7graphite mushy prepared by electromagnetic-mechanical stirring method, and the influence of solid fraction on the distributing of graphite particles in ingot was studied....Al-7graphite composite was processed using Al-7graphite mushy prepared by electromagnetic-mechanical stirring method, and the influence of solid fraction on the distributing of graphite particles in ingot was studied. The results shows that the relationship between solid fraction and stirring temperature of mushy is: f(s) = 591.5-0.897 t (where f(s) is the solid fraction, t is the stirring temperature). For Al-7graphite composite, with the increasing of solid fraction, the aggregation extent of graphite particles reduced gradually, and when solid fraction was larger than 30%, graphite particles could distribute evenly in ingot.展开更多
Anion-immobilized solid composite electrolytes(SCEs)are important to restrain the propagation of lithium dendrites for all solid-state lithium metal batteries(ASSLMBs).Herein,a novel SCEs based on metal-organic framew...Anion-immobilized solid composite electrolytes(SCEs)are important to restrain the propagation of lithium dendrites for all solid-state lithium metal batteries(ASSLMBs).Herein,a novel SCEs based on metal-organic frameworks(MOFs,UiO-66-NH_(2))and superacid ZrO_(2)(S-ZrO_(2))fillers are proposed,and the samples were characterized by X-ray diffraction(XRD),scanning electron microscope(SEM),energy dispersive X-ray spectroscopy(EDS),thermo-gravimetric analyzer(TGA)and some other electrochemical measurements.The-NH_(2) groups of UiO-66-NH_(2) combines with F atoms of poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)chains by hydrogen bonds,leading to a high electrochemical stability window of 5 V.Owing to the incorporation of UiO-66-NH_(2) and S-ZrO_(2) in PVDF-HFP polymer,the open metal sites of MOFs and acid surfaces of S-ZrO_(2) can immobilize anions by strong Lewis acid-base interaction,which enhances the effect of immobilization anions,achieving a high Li-ion transference number(t_(+))of 0.72,and acquiring a high ionic conductivity of 1.05×10^(-4) S·cm^(-1) at 60℃.The symmetrical Li/Li cells with the anion-immobilized SCEs may steadily operate for over 600 h at 0.05 mA·cm^(-2) without the shortcircuit occurring.Besides,the solid composite Li/LiFePO_(4)(LFP)cell with the anion-immobilized SCEs shows a superior discharge specific capacity of 158 mAh·g^(-1) at 0.2 C.The results illustrate that the anion-immobilized SCEs are one of the most promising choices to optimize the performances of ASSLMBs.展开更多
基金supported by the National Key R&D Program of China(2021YFB2400400)the National Natural Science Foundation of China(Grant No.22379120,22179085)+5 种基金the Key Research and Development Plan of Shanxi Province(China,Grant No.2018ZDXM-GY-135,2021JLM-36)the National Natural Science Foundation of China(Grant No.22108218)the“Young Talent Support Plan”of Xi’an Jiaotong University(71211201010723)the Qinchuangyuan Innovative Talent Project(QCYRCXM-2022-137)the“Young Talent Support Plan”of Xi’an Jiaotong University(HG6J003)the“1000-Plan program”of Shaanxi Province。
文摘The insurmountable charge transfer impedance at the Li metal/solid polymer electrolytes(SPEs)interface at room temperature as well as the ascending risk of short circuits at the operating temperature higher than the melting point,dominantly limits their applications in solid-state batteries(SSBs).Although the inorganic filler such as CeO_(2)nanoparticle content of composite solid polymer electrolytes(CSPEs)can significantly reduce the enormous charge transfer impedance at the Li metal/SPEs interface,we found that the required content of CeO_(2)nanoparticles in SPEs varies for achieving a decent interfacial charge transfer impedance and the bulk ionic conductivity in CSPEs.In this regard,a sandwich-type composited solid polymer electrolyte with a 10%CeO_(2)CSPEs interlayer sandwiched between two 50%CeO_(2)CSPEs thin layers(sandwiched CSPEs)is constructed to simultaneously achieve low charge transfer impedance and superior ionic conductivity at 30℃.The sandwiched CSPEs allow for stable cycling of Li plating and stripping for 1000 h with 129 mV polarized voltage at 0.1 mA cm^(-2)and 30℃.In addition,the LiFePO_(4)/Sandwiched CSPEs/Li cell also exhibits exceptional cycle performance at 30℃and even elevated120℃without short circuits.Constructing multi-layered CSPEs with optimized contents of the inorganic fillers can be an efficient method for developing all solid-state PEO-based batteries with high performance at a wide range of temperatures.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the MSIT,Korea (No. 2018R1A5A1025224 and No. 2019R1A2C1084020)this research received funding support from a grant from the Korea Planning&Evaluation Institute of Industrial Technology (KEIT),funded by the MOTIE of Korea (No. 10077287)。
文摘Composite solid electrolytes(CSEs)have emerged as promising candidates for safe and high-energy–density solid-state lithium metal batteries(SSLMBs).However,concurrently achieving exceptional ionic conductivity and interface compatibility between the electrolyte and electrode presents a significant challenge in the development of high-performance CSEs for SSLMBs.To overcome these challenges,we present a method involving the in-situ polymerization of a monomer within a self-supported porous Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZT)to produce the CSE.The synergy of the continuous conductive LLZT network,well-organized polymer,and their interface can enhance the ionic conductivity of the CSE at room temperature.Furthermore,the in-situ polymerization process can also con-struct the integration and compatibility of the solid electrolyte–solid electrode interface.The synthesized CSE exhibited a high ionic conductivity of 1.117 mS cm^(-1),a significant lithium transference number of 0.627,and exhibited electrochemical stability up to 5.06 V vs.Li/Li+at 30℃.Moreover,the Li|CSE|LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) cell delivered a discharge capacity of 105.1 mAh g^(-1) after 400 cycles at 0.5 C and 30℃,corresponding to a capacity retention of 61%.This methodology could be extended to a variety of ceramic,polymer electrolytes,or battery systems,thereby offering a viable strategy to improve the electrochemical properties of CSEs for high-energy–density SSLMBs.
基金financially supported by National Key R&D Program for International Cooperation(No.2021YFE0115100)the project of the National Natural Science Foundation of China(Nos.51872240,51972270 and 52172101)+4 种基金Key Research and Development Program of Shaanxi Province(No.2021ZDLGY14-08 and 2022KWZ-04)Natural Science Foundation of Shaanxi Province(2020JZ-07)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(2021-TS-03)the Fundamental Research Funds for the Central Universities(No.3102019JC005 and G2022KY0604)the Research Fund of the State Key Laboratory of Solid Lubrication(CAS),China(LSL-2007)。
文摘Composite solid electrolytes(CSEs)with poly(ethylene oxide)(PEO)have become fairly prevalent for fabricating high-performance solid-state lithium metal batteries due to their high Li~+solvating capability,flexible processability and low cost.However,unsatisfactory room-temperature ionic conductivity,weak interfacial compatibility and uncontrollable Li dendrite growth seriously hinder their progress.Enormous efforts have been devoted to combining PEO with ceramics either as fillers or major matrix with the rational design of two-phase architecture,spatial distribution and content,which is anticipated to hold the key to increasing ionic conductivity and resolving interfacial compatibility within CSEs and between CSEs/electrodes.Unfortunately,a comprehensive review exclusively discussing the design,preparation and application of PEO/ceramic-based CSEs is largely lacking,in spite of tremendous reviews dealing with a broad spectrum of polymers and ceramics.Consequently,this review targets recent advances in PEO/ceramicbased CSEs,starting with a brief introduction,followed by their ionic conduction mechanism,preparation methods,and then an emphasis on resolving ionic conductivity and interfacial compatibility.Afterward,their applications in solid-state lithium metal batteries with transition metal oxides and sulfur cathodes are summarized.Finally,a summary and outlook on existing challenges and future research directions are proposed.
基金Funded by Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education(No.JLJZHDKF202204)。
文摘This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly ash(FA),and analyzed its mechanical properties,hydration mechanism,and retardation mechanism.The effects of retarders on the hydration products,mechanical properties,and hydration kinetics of ACCM were investigated using XRD,SEM,FTIR,EDS,and thermoactive microcalorimetry.The results showed that Na_(2)B_(4)O_(7)·10H_(2)O(B)delayed the exotherm during the alkali activation process and could effectively delay the setting time of ACCM,but the mechanical properties were slightly decreased.The setting time of ACCM increased with the increase in SG content,but the mechanical properties of ACCM decreased with the increase in SG content.C1_(2)H_(22)O_(11)(CHO)could effectively delay the hydration reaction of ACCM and weakly enhanced the compressive strength.H_(3)PO_(4)(HP)at a concentration of 0.05 mol/L had a certain effect on ACCM retardation,but HP at a concentration of 0.07 and 0.09 mol/L had an effect of promoting the setting and hardening time of ACCM.
基金the support of the Zhejiang Provincial Natural Science Foundation of China (LR20E020002, LD22E020006)the National Natural Science Foundation of China (NSFC) (U20A20253, 21972127, 22279116)。
文摘The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the currently used liquid carbonate compounds in commercial lithium-ion battery electrolytes pose potential safety hazards such as leakage,swelling,corrosion,and flammability.Solid electrolytes can be used to mitigate these risks and create a safer lithium battery.Furthermore,high-energy density can be achieved by using solid electrolytes along with high-voltage cathode and metal lithium anode.Two types of solid electrolytes are generally used:inorganic solid electrolytes and polymer solid electrolytes.Inorganic solid electrolytes have high ionic conductivity,electrochemical stability window,and mechanical strength,but suffer from large solid/solid contact resistance between the electrode and electrolyte.Polymer solid electrolytes have good flexibility,processability,and contact interface properties,but low room temperature ionic conductivity,necessitating operation at elevated temperatures.Composite solid electrolytes(CSEs) are a promising alternative because they offer light weight and flexibility,like polymers,as well as the strength and stability of inorganic electrolytes.This paper presents a comprehensive review of recent advances in CSEs to help researchers optimize CSE composition and interactions for practical applications.It covers the development history of solid-state electrolytes,CSE properties with respect to nanofillers,morphology,and polymer types,and also discusses the lithium-ion transport mechanism of the composite electrolyte,and the methods of engineering interfaces with the positive and negative electrodes.Overall,the paper aims to provide an outlook on the potential applications of CSEs in solid-state lithium batteries,and to inspire further research aimed at the development of more systematic optimization strategies for CSEs.
基金supported by the National Natural Science Foundation of China, [Award number: 11972372] and [Award number: U20A20231]。
文摘Element W can effectively improve the density of energetic structural materials. However, W is an inert element and does not combust in air. To change the reaction characteristics of W, 60 at.% Al was introduced into W through mechanical alloying. XRD analysis shows that after 50 h of ball milling, the diffraction peak of Al completely disappears and W(Al60) super-saturated solid solution powder is obtained. Further observation by HAADF and HRTEM reveals that the W(Al60) super-saturated solid solution powder is a mixture of solid solution and amorphous phase. Based on the good thermal stability of W(Al60) alloy powder below 1000℃, W(Al60)-Al composite was synthesized by hot pressing process.Impact initiation experiments suggest that the W(Al60)-Al composite has excellent reaction characteristics, and multiple types of tungsten oxides are detected in the reaction products, showing that the modified W is combustible in air. Due to the combustion of tungsten, the energy release rate of the W(Al60)-Al composite at speed of 1362 m/s reaches 2.71 kJ/g.
基金The authors would like to acknowledge the financial support from National Nat-ural Science Foundation of China (U2004199)Excellent Youth Foundation of Henan Province (202300410373)+2 种基金China Postdoctoral Science Foundation (2021T140615 and 2020M672281)Natural Science Foundation of Henan Province (212300410285)Young Talent Support Project of Henan Province(2021HYTP028).
文摘Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid electrolyte is synthesized by filtrating–NH 2 functionalized metal-organic framework nanosheets and then being threaded with poly(ethylene oxide)chains induced by the hydrogen-bonding interaction from–NH_(2) groups.It is demonstrated that the threaded poly(ethylene oxide)chains lock the adjacent metal-organic framework nanosheets,giving highly enhanced structural stability(Young’s modulus,1.3 GPa)to 7.5-μm-thick laminar composite solid electrolyte.Importantly,these poly(ethylene oxide)chains with stretching structure serve as continuous conduction pathways along the chains in pores.It makes the non-conduction laminar metal-organic framework electrolyte highly conductive:3.97×10^(−5) S cm^(−1) at 25℃,which is even over 25 times higher than that of pure poly(ethylene oxide)electrolyte.The assembled lithium cell,thus,acquires superior cycling stability,initial discharge capacity(148 mAh g^(−1) at 0.5 C and 60℃),and retention(94% after 150 cycles).Besides,the pore size of nanosheet is tailored(24.5–40.9˚A)to evaluate the mechanisms of chain conformation and ion transport in confined space.It shows that the confined pore only with proper size could facilitate the stretching of poly(ethylene oxide)chains,and meanwhile inhibit their disorder degree.Specifically,the pore size of 33.8˚A shows optimized confinement effect with trans-poly(ethylene oxide)and cis-poly(ethylene oxide)conformation,which offers great significance in ion conduction.Our design of poly(ethylene oxide)-threaded architecture provides a platform and paves a way to the rational design of next-generation high-performance porous electrolytes.
基金Projects(51371114,51501112,51504151)supported by the National Natural Science Foundation of ChinaProject(2012CB619600)supported by the National Basic Research Program of ChinaProject(SAMC14-JS-15-047)supported by the National Engineering and Research Center for Commercial Aircraft Manufacturing,China
文摘Solid carburization was employed to improve the hardness of Ti-6Al-4V alloy and (TiB+La2O3)/Ti composite. The samples wrapped in graphite powder were placed in sealed quartz tubes, followed by solid carburization at 1227 K for 24 h. Microstructure and phase analysis indicated that TiC reinforcements and Ti-C solid solutions were introduced after solid carburization. Moreover, the volume fraction of equiaxedα-Ti phase in diffusion layer decreased obviously with increasing sample depth. Hardness testing results indicated that both the carburized surfaces performed significant improvement of about 100% in micro-hardness compared with untreated materials. The variation of carbon contents with increasing sample depth resulted in a hardened layer of 300 μm in the carburized samples. Meanwhile, slight influence on the internal microstructure and hardness indicated that solid carburization was an effective method in strengthening the surface of titanium alloy and titanium matrix composite.
基金supported by the National Key Research and Development Program (2016YFA0202500, 2015CB932500, and 2016YFA0200102)the National Natural Science Foundation of China (21676160, 21825501, 21805161, and 21808125)China Postdoctoral Science Foundation (2017M620773, 2018M631480, and BX201700125)
文摘Lithium (Li) metal with an ultrahigh specific theoretical capacity and the lowest reduction potential is strongly considered as a promising anode for high-energy-density batteries. However, uncontrolled lithium dendrites and infinite volume change during repeated plating/stripping cycles hinder its practical applications immensely. Herein, a house-like Li anode (housed Li) was designed to circumvent the above issues. The house matrix was composed of carbon fiber matrix and affords a stable structure to relieve the volume change. An artificial solid electrolyte layer was formed on composite Li metal, just like the roof of a house, which facilitates uniform Li ions diffusion and serves as a physical barrier against electrolyte corrosion. With the combination of solid electrolyte layer and matrix in the composite Li metal anode, both dendrite growth and volume expansion are remarkably inhibited. The housed Li|LiFePO4 batteries exhibited over 95% capacity retention after 500 cycles at 1.0 C in coin cell and 85% capacity retention after 80 cycles at 0.5 C in pouch cell. The rationally combination of solid electrolyte layer protection and housed framework in one Li metal anode sheds fresh insights on the design principle of a safe and long-lifespan Li metal anode for Li metal batteries.
基金financial support of the National 973 Program in China (No. 61338)the National Funds in China (Nos.11772352, 61407200203 and 51328050101)
文摘Based on the dynamic loading(1-100 s^(-1)) experiments under different temperatures(223-298 K) and stress states, uniaxial and biaxial strength criterion of a Hydroxyl-terminated polybutadiene(HTPB)based composite solid propellant were further investigated. These experiments were conducted through the use of a new uniaxial INSTRON testing machine, different new designed gripping apparatus and samples with different configurations. According to the test results, dynamic uniaxial tensile strength criterion of the propellant was directly constructed with the master curve of the uniaxial maximum tensile stress. Whereas, a new method was proposed to determine the dynamic uniaxial compressive strength of the propellant in this study. Then uniaxial compressive strength criterion of the propellant was constructed based on the related master curve. Moreover, it found that the uniaxial tensilecompressive strength ratio of the propellant is more sensitive to loading temperature under the test conditions. The value of this parameter is about 0.4 at room temperature, and it reduces to 0.2-0.3 at low temperatures. Finally, the theoretical biaxial strength criterion of HTPB propellant under dynamic loading was constructed with the unified strength theory, the uniaxial strength and the typical biaxial tensile strength. In addition, the theoretical limit lines of the principal stress plane for the propellant under dynamic loading at different temperatures were further plotted, and the scope of the limit line increases with decreasing temperature.
基金funding support from 1000 Talent Plan program(NO.31370086963030)research projects from Shandong Province(2018JMRH0211,2017CXGC1010 and 2016GGX104001)+2 种基金Taishan Scholar Program(11370085961006)the National Science Foundation of Shandong Province(ZR2017MEM002)the Fundamental Research Funds of Shandong University(201810422046,2017JC010,2017JC042,and 2016JC005)。
文摘High ionic conductivity and superior interfacial stability of solid electrolytes at the electrodes are crucial factors for high-performance all-solid-state sodium batteries. Herein, a composite solid electrolyte Na3PS4-polyethylene oxide is synthesized by the solution-phase reaction method with an improved ionic conductivity up to 9.4 × 10-5 S/cm at room temperature. Moreover, polyethylene oxide polymer layer is wrapped homogeneously on the surface of Na3PS4 particles, which could effectively avoid the direct contact between Na3PS4 electrolyte and sodium metal, thus alleviate their side reactions. We demonstrate that all-solid-state battery SnS2/Na with the composite solid electrolyte Na3PS4-polyethylene oxide delivers an enhanced electrochemical performance with 230 m Ah/g after 40 cycles.
基金the National Natural Science Foundation of China(Grant No.21875071)the National Natural Science Foundation of China-Hong Kong Research Grant Council(NSFC-RGC)Joint Research Scheme(Grant No.21661162002 and N_HKUST601/16)the Guangzhou Scientific and Technological Planning Project(Grant No.201704030061)。
文摘Solid polymer electrolytes(SPEs), such as polyethylene oxide(PEO), are characteristic of good flexibility and excellent processability, but they suffer from low ionic conductivity and small Li+transference number at ambient temperature. Inorganic solid electrolytes(ISEs), garnet-type Li7La3Zr2O12 and its derivatives(LLZO-based) in particular, possess high ionic conductivity at room temperature, wide electrochemical stability window, large Li+transference number as well as good stability against Li metal anode.Nevertheless, lithium dendrites growth, interfacial contact issue and brittle nature of LLZO-based ceramic electrolytes prevent their practical applications. In response to these shortcomings, LLZO-based/polymer solid composite electrolytes(SCEs), taking complementary advantages of two kinds of electrolytes, and thus simultaneously improving the electrode wettability, ionic conductivity and mechanical strength, have been made to develop high-performance SCEs in recent years. Herein, the intrinsic properties and research progress of LLZO-based/polymer SCEs, including LLZO-based/PEO SCEs(LLZO-based/PEO SCEs with uniform dispersion of LLZO-based fillers and LLZO-based/PEO layered SCEs) and LLZO-based/novel polymers SCEs, are summarized. Besides, comprehensive updates on their applications in solid-state batteries are also presented. Finally, challenges and perspectives of LLZO-based/polymer SCEs for advanced allsolid-state lithium batteries(ASSLBs) are suggested. This review paper aims to provide systematic research progress of LLZO-based/polymer SCEs, to allow for more efficient and target-oriented research on improving LLZO-based/polymer SCEs.
文摘Effects of metal (Ni, Cu, Al) and composite metal (NiB, NiCu, NiCuB) nanopowders on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellant ammonium perchlorate/hydroxyterminated polybutadiene (AP/HTPB) were studied by thermal analysis (DTA). The results show that metal and composite metal nanopowders all have good catalytic effects on the thermal decomposition of AP and AP/HTPB composite solid propellant. The effects of metal nanopowders on the thermal decomposition of AP are less than those of the composite metal nanopowders. The effects of metal and composite metal nanopowders on the thermal decomposition of AP are different from those on the thermal decomposition of the AP/HTPB composite solid propellant.
文摘Composite solid propellants(CSPs) have widely been used as main energy source for propelling the rockets in both space and military applications. Internal ballistic parameters of rockets like characteristic exhaust velocity, specific impulse, thrust, burning rate etc., are measured to assess and control the performance of rocket motors. The burn rate of solid propellants has been considered as most vital parameter for design of solid rocket motors to meet specific mission requirements. The burning rate of solid propellants can be tailored by using different constituents, extent of oxidizer loading and its particle size and more commonly by incorporating suitable combustion catalysts. Various metal oxides(MOs),complexes, metal powders and metal alloys have shown positive catalytic behaviour during the combustion of CSPs. These are usually solid-state catalysts that play multiple roles in combustion of CSPs such as reduction in activation energy, enhancement of rate of reaction, modification of sequences in reaction-phase, influence on condensed-phase combustion and participation in combustion process in gas-phase reactions. The application of nanoscale catalysts in CSPs has increased considerably in recent past due to their superior catalytic properties as compared to their bulk-sized counterparts. A large surface-to-volume ratio and quantum size effect of nanocatalysts are considered to be plausible reasons for improving the combustion characteristics of propellants. Several efforts have been made to produce nanoscale combustion catalysts for advanced propellant formulations to improve their energetics. The work done so far is largely scattered. In this review, an effort has been made to introduce various combustion catalysts having at least a metallic entity. Recent developments of nanoscale combustion catalysts with their specific merits are discussed. The combustion chemistry of a typical CSP is briefly discussed for providing a better understanding on role of combustion catalysts in burning rate enhancement. Available information on different types of combustion nanocatalysts is also presented with critical comments.
基金This work was financially supported by Stable Support Plan Program for Higher Education Institutions(20220815094504001)Shenzhen Key Laboratory of Advanced Energy Storage(ZDSYS20220401141000001)+1 种基金This work was also financially supported by the Shenzhen Science and Technology Innovation Commission(GJHZ20200731095606021,20200925155544005)the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone(HZQB-KCZYB-2020083)。
文摘Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature.
基金supported by the National Natural Science Foundation of China of China(No.51771076)Innovative Research Groups of the National Natural Science Foundation of China(No.NSFC51621001)+2 种基金the‘‘1000 plan”from Chinese Government,the Guangdong‘‘Pearl River Talents Plan”(No.2017GC010218)the Guangzhou Science and Technology Plan Projects(No.201804010104)the R&D Program in Key Areas of Guangdong Province(No.2020B0101030005)。
文摘All-solid-state lithium battery(ASLB)based on sulfide-based electrolyte is considered to be a candidate for the next-generation high-energy storage system.Despite the high ionic conductivity of sulfide solid electrolyte,the poor interfacial stability(mechanically and chemically)between active materials and sulfide solid electrolytes in composite cathodes leads to inferior electrochemical performances,which impedes the practical application of sulfide electrolytes.In the past years,various of strategies have been carried out to achieve an interface with low impedance in the composite cathodes.Herein,a review of recent progress of composite cathodes for all-solid-state sulfide-based lithium batteries is summarized,including the interfacial issues,design strategies,fabrication methods,and characterization techniques.Finally,the main challenges and perspectives of composite cathodes for high-performance all-solidstate batteries are highlighted for future development.
基金financial support from the Indian Institute of Technology Bhubaneswar under the SEED project grant for fabricating the "cooling slope casting" experimental setupthe support extended by Central Research Facility (CRF), Indian Institute of Technology Kharagpur, toward the facility for conducting DTA experiments
文摘The key factor in semi-solid metal processing is the solid fraction at the forming temperature because it affects the microstructure and mechanical properties of the thixoformed components. Though an enormous amount of data exists on the solid fraction-temperature re- lationship in A356 alloy, information regarding the solid fraction evolution characteristics of A356-TiB2 composites is scarce. The present article establishes the temperature-solid fraction correlation in A356 alloy and A356-xTiB2 (x = 2.5wt% and 5wt%) composites using dif- ferential thermal analysis (DTA). The DTA results indicate that the solidification characteristics of the composites exhibited a variation of 2℃ and 3℃ in liquidus temperatures and a variation of 3℃ and 5℃ in solidus temperatures with respect to the base alloy. Moreover, the eutectic growth temperature and the solid fraction(fs) vs. temperature characteristics of the composites were found to be higher than those of the base alloy. The investigation revealed that in-situ formed TiB2 particles in the molten metal introduced more nucleation sites and reduced undercooling.
基金financially supported by the National Natural Science Foundation of China (51971080)the Shenzhen Bureau of Science,Technology and Innovation Commission (GXWD20201230155427003-20200730151200003 and JSGG20200914113601003)。
文摘The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.
基金China and Tsinghua-Zhongda Postdoctoral Science Foundation.]
文摘Al-7graphite composite was processed using Al-7graphite mushy prepared by electromagnetic-mechanical stirring method, and the influence of solid fraction on the distributing of graphite particles in ingot was studied. The results shows that the relationship between solid fraction and stirring temperature of mushy is: f(s) = 591.5-0.897 t (where f(s) is the solid fraction, t is the stirring temperature). For Al-7graphite composite, with the increasing of solid fraction, the aggregation extent of graphite particles reduced gradually, and when solid fraction was larger than 30%, graphite particles could distribute evenly in ingot.
基金financially supported by National Natural Science Foundation of China(No.21701083)Zhenjiang Key Laboratory of Marine Power Equipment Performance(SS2018006)+1 种基金The Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX19_0612)Project of Jiangsu University(High-Tech Ship)Collaborative Innovation Center(2019,1174871801-11).
文摘Anion-immobilized solid composite electrolytes(SCEs)are important to restrain the propagation of lithium dendrites for all solid-state lithium metal batteries(ASSLMBs).Herein,a novel SCEs based on metal-organic frameworks(MOFs,UiO-66-NH_(2))and superacid ZrO_(2)(S-ZrO_(2))fillers are proposed,and the samples were characterized by X-ray diffraction(XRD),scanning electron microscope(SEM),energy dispersive X-ray spectroscopy(EDS),thermo-gravimetric analyzer(TGA)and some other electrochemical measurements.The-NH_(2) groups of UiO-66-NH_(2) combines with F atoms of poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)chains by hydrogen bonds,leading to a high electrochemical stability window of 5 V.Owing to the incorporation of UiO-66-NH_(2) and S-ZrO_(2) in PVDF-HFP polymer,the open metal sites of MOFs and acid surfaces of S-ZrO_(2) can immobilize anions by strong Lewis acid-base interaction,which enhances the effect of immobilization anions,achieving a high Li-ion transference number(t_(+))of 0.72,and acquiring a high ionic conductivity of 1.05×10^(-4) S·cm^(-1) at 60℃.The symmetrical Li/Li cells with the anion-immobilized SCEs may steadily operate for over 600 h at 0.05 mA·cm^(-2) without the shortcircuit occurring.Besides,the solid composite Li/LiFePO_(4)(LFP)cell with the anion-immobilized SCEs shows a superior discharge specific capacity of 158 mAh·g^(-1) at 0.2 C.The results illustrate that the anion-immobilized SCEs are one of the most promising choices to optimize the performances of ASSLMBs.