期刊文献+
共找到167篇文章
< 1 2 9 >
每页显示 20 50 100
ERROR RESPONSE AND ROBUSTNESS OF A CLASS OF MULTILAYERED PERCEPTRONS WITH THRESHOLD FUNCTIONS
1
作者 Yang Liangtu Hu Dongcheng Luo Yupin(Department of Automation, Tsinghua University, Beijing 100084) 《Journal of Electronics(China)》 1999年第2期179-186,共8页
In this paper, based on a stochastic mode! for inputs and weights, and in view of the disturbance of correlative and large input and weight errors, a general algorithm to obtain the output error characteristics of a c... In this paper, based on a stochastic mode! for inputs and weights, and in view of the disturbance of correlative and large input and weight errors, a general algorithm to obtain the output error characteristics of a class of multilayered perceptrons with threshold functions is proposed by using statistical approach. Furthermore, the formula to calculate the robustness of the networks is also given. The result of computer simulation indicates the correctness of the algorithm. 展开更多
关键词 MULTILAYERED perceptrons THRESHOLD NEURON ERROR analysis ROBUSTNESS
下载PDF
Building up Multi-Layered Perceptrons as Classifier System for Decision Support
2
作者 Cat Jun, Zhai Fan & Feng Shan (Inst. of Sys. Eng., Huazhong University of Science and Technology, Wuhan 430074, China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1995年第2期32-39,共8页
This paper focuses on some application issues in m.multi-layered perceptrons researches. The following problem areas are discussed: (1) the classification capability of multi-layered perceptrons; (2) theself-configura... This paper focuses on some application issues in m.multi-layered perceptrons researches. The following problem areas are discussed: (1) the classification capability of multi-layered perceptrons; (2) theself-configuration algorithm for facilitating the design of the neural nets' structure;and,finally (3) the application of the fast BP algorithm to speed up the learning procedure. Some experimental results with respect to the application of multi-layered perceptrons as classifier systems in the comprehensive evaluation of Chinese large cities are presented. 展开更多
关键词 Multi-layered perceptron Decision support system Classification ability SELF-CONFIGURATION Comprehensive evaluation.
下载PDF
Multi-layer perceptron-based data-driven multiscale modelling of granular materials with a novel Frobenius norm-based internal variable 被引量:1
3
作者 Mengqi Wang Y.T.Feng +1 位作者 Shaoheng Guan Tongming Qu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2198-2218,共21页
One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural ne... One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural networks(RNNs)have been extensively applied to capture history-dependent constitutive responses of granular materials,but these multiple-step-based neural networks are neither sufficiently efficient nor aligned with the standard finite element method(FEM).Single-step-based neural networks like the multi-layer perceptron(MLP)are an alternative to bypass the above issues but have to introduce some internal variables to encode complex loading histories.In this work,one novel Frobenius norm-based internal variable,together with the Fourier layer and residual architectureenhanced MLP model,is crafted to replicate the history-dependent constitutive features of representative volume element(RVE)for granular materials.The obtained ML models are then seamlessly embedded into the FEM to solve the BVP of a biaxial compression case and a rigid strip footing case.The obtained solutions are comparable to results from the FEM-DEM multiscale modelling but achieve significantly improved efficiency.The results demonstrate the applicability of the proposed internal variable in enabling MLP to capture highly nonlinear constitutive responses of granular materials. 展开更多
关键词 Granular materials History-dependence Multi-layer perceptron(MLP) Discrete element method FEM-DEM Machine learning
下载PDF
Uncertainties in landslide susceptibility prediction:Influence rule of different levels of errors in landslide spatial position 被引量:1
4
作者 Faming Huang Ronghui Li +3 位作者 Filippo Catani Xiaoting Zhou Ziqiang Zeng Jinsong Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4177-4191,共15页
The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable ... The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable uncertainties in LSP modeling.To overcome this drawback,this study explores the influence of positional errors of landslide spatial position on LSP uncertainties,and then innovatively proposes a semi-supervised machine learning model to reduce the landslide spatial position error.This paper collected 16 environmental factors and 337 landslides with accurate spatial positions taking Shangyou County of China as an example.The 30e110 m error-based multilayer perceptron(MLP)and random forest(RF)models for LSP are established by randomly offsetting the original landslide by 30,50,70,90 and 110 m.The LSP uncertainties are analyzed by the LSP accuracy and distribution characteristics.Finally,a semi-supervised model is proposed to relieve the LSP uncertainties.Results show that:(1)The LSP accuracies of error-based RF/MLP models decrease with the increase of landslide position errors,and are lower than those of original data-based models;(2)70 m error-based models can still reflect the overall distribution characteristics of landslide susceptibility indices,thus original landslides with certain position errors are acceptable for LSP;(3)Semi-supervised machine learning model can efficiently reduce the landslide position errors and thus improve the LSP accuracies. 展开更多
关键词 Landslide susceptibility prediction Random landslide position errors Uncertainty analysis Multi-layer perceptron Random forest Semi-supervised machine learning
下载PDF
A hybrid machine learning optimization algorithm for multivariable pore pressure prediction
5
作者 Song Deng Hao-Yu Pan +8 位作者 Hai-Ge Wang Shou-Kun Xu Xiao-Peng Yan Chao-Wei Li Ming-Guo Peng Hao-Ping Peng Lin Shi Meng Cui Fei Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期535-550,共16页
Pore pressure is essential data in drilling design,and its accurate prediction is necessary to ensure drilling safety and improve drilling efficiency.Traditional methods for predicting pore pressure are limited when f... Pore pressure is essential data in drilling design,and its accurate prediction is necessary to ensure drilling safety and improve drilling efficiency.Traditional methods for predicting pore pressure are limited when forming particular structures and lithology.In this paper,a machine learning algorithm and effective stress theorem are used to establish the transformation model between rock physical parameters and pore pressure.This study collects data from three wells.Well 1 had 881 data sets for model training,and Wells 2 and 3 had 538 and 464 data sets for model testing.In this paper,support vector machine(SVM),random forest(RF),extreme gradient boosting(XGB),and multilayer perceptron(MLP)are selected as the machine learning algorithms for pore pressure modeling.In addition,this paper uses the grey wolf optimization(GWO)algorithm,particle swarm optimization(PSO)algorithm,sparrow search algorithm(SSA),and bat algorithm(BA)to establish a hybrid machine learning optimization algorithm,and proposes an improved grey wolf optimization(IGWO)algorithm.The IGWO-MLP model obtained the minimum root mean square error(RMSE)by using the 5-fold cross-validation method for the training data.For the pore pressure data in Well 2 and Well 3,the coefficients of determination(R^(2))of SVM,RF,XGB,and MLP are 0.9930 and 0.9446,0.9943 and 0.9472,0.9945 and 0.9488,0.9949 and 0.9574.MLP achieves optimal performance on both training and test data,and the MLP model shows a high degree of generalization.It indicates that the IGWO-MLP is an excellent predictor of pore pressure and can be used to predict pore pressure. 展开更多
关键词 Pore pressure Grey wolf optimization Multilayer perceptron Effective stress Machine learning
下载PDF
Dynamic Multi-Layer Perceptron for Fetal Health Classification Using Cardiotocography Data
6
作者 Uddagiri Sirisha Parvathaneni Naga Srinivasu +4 位作者 Panguluri Padmavathi Seongki Kim Aruna Pavate Jana Shafi Muhammad Fazal Ijaz 《Computers, Materials & Continua》 SCIE EI 2024年第8期2301-2330,共30页
Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To kn... Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To know the status of the fetus,doctors monitor blood reports,Ultrasounds,cardiotocography(CTG)data,etc.Still,in this research,we have considered CTG data,which provides information on heart rate and uterine contractions during pregnancy.Several researchers have proposed various methods for classifying the status of fetus growth.Manual processing of CTG data is time-consuming and unreliable.So,automated tools should be used to classify fetal health.This study proposes a novel neural network-based architecture,the Dynamic Multi-Layer Perceptron model,evaluated from a single layer to several layers to classify fetal health.Various strategies were applied,including pre-processing data using techniques like Balancing,Scaling,Normalization hyperparameter tuning,batch normalization,early stopping,etc.,to enhance the model’s performance.A comparative analysis of the proposed method is done against the traditional machine learning models to showcase its accuracy(97%).An ablation study without any pre-processing techniques is also illustrated.This study easily provides valuable interpretations for healthcare professionals in the decision-making process. 展开更多
关键词 Fetal health cardiotocography data deep learning dynamic multi-layer perceptron feature engineering
下载PDF
Enhancing Healthcare Data Security and Disease Detection Using Crossover-Based Multilayer Perceptron in Smart Healthcare Systems
7
作者 Mustufa Haider Abidi Hisham Alkhalefah Mohamed K.Aboudaif 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期977-997,共21页
The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthca... The healthcare data requires accurate disease detection analysis,real-timemonitoring,and advancements to ensure proper treatment for patients.Consequently,Machine Learning methods are widely utilized in Smart Healthcare Systems(SHS)to extract valuable features fromheterogeneous and high-dimensional healthcare data for predicting various diseases and monitoring patient activities.These methods are employed across different domains that are susceptible to adversarial attacks,necessitating careful consideration.Hence,this paper proposes a crossover-based Multilayer Perceptron(CMLP)model.The collected samples are pre-processed and fed into the crossover-based multilayer perceptron neural network to detect adversarial attacks on themedical records of patients.Once an attack is detected,healthcare professionals are promptly alerted to prevent data leakage.The paper utilizes two datasets,namely the synthetic dataset and the University of Queensland Vital Signs(UQVS)dataset,from which numerous samples are collected.Experimental results are conducted to evaluate the performance of the proposed CMLP model,utilizing various performancemeasures such as Recall,Precision,Accuracy,and F1-score to predict patient activities.Comparing the proposed method with existing approaches,it achieves the highest accuracy,precision,recall,and F1-score.Specifically,the proposedmethod achieves a precision of 93%,an accuracy of 97%,an F1-score of 92%,and a recall of 92%. 展开更多
关键词 Smart healthcare systems multilayer perceptron CYBERSECURITY adversarial attack detection Healthcare 4.0
下载PDF
Recommendation System Based on Perceptron and Graph Convolution Network
8
作者 Zuozheng Lian Yongchao Yin Haizhen Wang 《Computers, Materials & Continua》 SCIE EI 2024年第6期3939-3954,共16页
The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combinatio... The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms. 展开更多
关键词 Recommendation system graph convolution network attention mechanism multi-layer perceptron
下载PDF
Improved reservoir characterization by means of supervised machine learning and model-based seismic impedance inversion in the Penobscot field,Scotian Basin
9
作者 Satya Narayan Soumyashree Debasis Sahoo +2 位作者 Soumitra Kar Sanjit Kumar Pal Subhra Kangsabanik 《Energy Geoscience》 EI 2024年第2期183-201,共19页
The present research work attempted to delineate and characterize the reservoir facies from the Dawson Canyon Formation in the Penobscot field,Scotian Basin.An integrated study of instantaneous frequency,P-impedance,v... The present research work attempted to delineate and characterize the reservoir facies from the Dawson Canyon Formation in the Penobscot field,Scotian Basin.An integrated study of instantaneous frequency,P-impedance,volume of clay and neutron-porosity attributes,and structural framework was done to unravel the Late Cretaceous depositional system and reservoir facies distribution patterns within the study area.Fault strikes were found in the EW and NEE-SWW directions indicating the dominant course of tectonic activities during the Late Cretaceous period in the region.P-impedance was estimated using model-based seismic inversion.Petrophysical properties such as the neutron porosity(NPHI)and volume of clay(VCL)were estimated using the multilayer perceptron neural network with high accuracy.Comparatively,a combination of low instantaneous frequency(15-30 Hz),moderate to high impedance(7000-9500 gm/cc*m/s),low neutron porosity(27%-40%)and low volume of clay(40%-60%),suggests fair-to-good sandstone development in the Dawson Canyon Formation.After calibration with the welllog data,it is found that further lowering in these attribute responses signifies the clean sandstone facies possibly containing hydrocarbons.The present study suggests that the shale lithofacies dominates the Late Cretaceous deposition(Dawson Canyon Formation)in the Penobscot field,Scotian Basin.Major faults and overlying shale facies provide structural and stratigraphic seals and act as a suitable hydrocarbon entrapment mechanism in the Dawson Canyon Formation's reservoirs.The present research advocates the integrated analysis of multi-attributes estimated using different methods to minimize the risk involved in hydrocarbon exploration. 展开更多
关键词 Reservoir characterization Model-based inversion Multilayer perceptron(MLP) IMPEDANCE Petrophysical properties Scotian Basin
下载PDF
Pioneering role of machine learning in unveiling intensive care unitacquired weakness
10
作者 Silvano Dragonieri 《World Journal of Clinical Cases》 SCIE 2024年第13期2157-2159,共3页
In the research published in the World Journal of Clinical Cases,Wang and Long conducted a quantitative analysis to delineate the risk factors for intensive care unit-acquired weakness(ICU-AW)utilizing advanced machin... In the research published in the World Journal of Clinical Cases,Wang and Long conducted a quantitative analysis to delineate the risk factors for intensive care unit-acquired weakness(ICU-AW)utilizing advanced machine learning methodologies.The study employed a multilayer perceptron neural network to accurately predict the incidence of ICU-AW,focusing on critical variables such as ICU stay duration and mechanical ventilation.This research marks a significant advancement in applying machine learning to clinical diagnostics,offering a new paradigm for predictive medicine in critical care.It underscores the importance of integrating artificial intelligence technologies in clinical practice to enhance patient management strategies and calls for interdisciplinary collaboration to drive innovation in healthcare. 展开更多
关键词 Intensive care unit-acquired weakness Machine learning Multilayer perceptron neural network Predictive medicine Interdisciplinary collaboration
下载PDF
People Recognition by RGB and NIR Analysis from Digital Image Database Using Cross-Correlation and Wavelets
11
作者 David Martínez-Martínez Yedid Erandini Niño-Membrillo +3 位作者 José Francisco Solís-Villarreal Oscar Espinoza-Ortega Lizbeth Sandoval-Juárez Francisco Javier Núñez-García 《Engineering(科研)》 2024年第10期353-359,共7页
This document presents a framework for recognizing people by palm vein distribution analysis using cross-correlation based signatures to obtain descriptors. Haar wavelets are useful in reducing the number of features ... This document presents a framework for recognizing people by palm vein distribution analysis using cross-correlation based signatures to obtain descriptors. Haar wavelets are useful in reducing the number of features while maintaining high recognition rates. This experiment achieved 97.5% of individuals classified correctly with two levels of Haar wavelets. This study used twelve-version of RGB and NIR (near infrared) wavelength images per individual. One hundred people were studied;therefore 4,800 instances compose the complete database. A Multilayer Perceptron (MLP) was trained to improve the recognition rate in a k-fold cross-validation test with k = 10. Classification results using MLP neural network were obtained using Weka (open source machine learning software). 展开更多
关键词 Palm Vein Recognition CROSS-CORRELATION Haar Wavelets Multilayer Perceptron
下载PDF
A Multilayer Perceptron Artificial Neural Network Study of Fatal Road Traffic Crashes
12
作者 Ed Pearson III Aschalew Kassu +1 位作者 Louisa Tembo Oluwatodimu Adegoke 《Journal of Data Analysis and Information Processing》 2024年第3期419-431,共13页
This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential p... This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential predictors, including traffic volume, prevailing weather conditions, roadway characteristics and features, drivers’ age and gender, and number of lanes. Based on the output of the model and the variables’ importance factors, seven significant variables are identified and used for further analysis to improve the performance of models. The model is optimized by systematically changing the parameters, including the number of hidden layers and the activation function of both the hidden and output layers. The performances of the MLANN models are evaluated using the percentage of the achieved accuracy, R-squared, and Sum of Square Error (SSE) functions. 展开更多
关键词 Artificial Neural Network Multilayer Perceptron Fatal Crash Traffic Safety
下载PDF
基于Perceptron建立某车型焊钉及白车身在线检测体系
13
作者 秦绪军 杨壮壮 赵峪奇 《汽车工艺师》 2024年第1期71-76,共6页
以北京奔驰汽车有限公司206车型为基础,基于Perceptron就螺柱焊钉位置尺寸、车身尺寸和覆盖件尺寸在线自动检测以及相应的精度控制进行了研究,规划并建立焊钉位置尺寸在线测量点76个,普通测量特征1373个测量点;规划并实施焊钉在线测量... 以北京奔驰汽车有限公司206车型为基础,基于Perceptron就螺柱焊钉位置尺寸、车身尺寸和覆盖件尺寸在线自动检测以及相应的精度控制进行了研究,规划并建立焊钉位置尺寸在线测量点76个,普通测量特征1373个测量点;规划并实施焊钉在线测量方案以及后端、Z1和Z2.3在线测量方案;完成在线检测工位测量工装优化改进,达成了基于Perceptron的V206焊钉及白车身在线检测体系建设,并实现了工时和成本的节约。 展开更多
关键词 PERCEPTRON 螺柱焊钉检测 在线检测
下载PDF
MODIFIED OPTIMIZATION LAYER BY LAYER ALGORITHM FOR LEARNING MULTILAYER PERCEPTRONS
14
作者 刘德刚 章祥荪 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2000年第1期59-69,共11页
Learning of the feedforward multilayer perceptron (MLP) networks is to adapt all synaptic weights in such a way that the discrepancy between the actual output signals and the desired signals, averaged over all learnin... Learning of the feedforward multilayer perceptron (MLP) networks is to adapt all synaptic weights in such a way that the discrepancy between the actual output signals and the desired signals, averaged over all learning examples (training patterns), is as small as possible. The backpropagation, or variations thereof, is a standard method applied to adjust the synaptic weights in the network in order to minimize a given cost function. However as a steepest descent approach, BP algorithm is too slow for many applications. Since late 1980s lots of efforts have been reported in the literature aimed at improving the efficiency of the algorithm. Among them a recently proposed learning strategy based on linearization of the nonlinear activation functions and optimization of the multilayer perceptron layer by layer (OLL) seems promising. In this paper a modified learning procedure is presented which tries to find a weight change vector at each trial iteration in the OLL algorithm more efficiently. The proposed learning procedure can save expensive computation efforts and yield better convergence rate as compared to the original OLL learning algorithms especially for large scale networks. The improved OLL learning algorithm is applied to the time series prediction problems presented by the OLL authors, and demonstrates a faster learning capability. 展开更多
关键词 Multilayer perceptron faster learning algorithms
全文增补中
A Novel Approach to Heart Failure Prediction and Classification through Advanced Deep Learning Model
15
作者 Abdalla Mahgoub 《World Journal of Cardiovascular Diseases》 2023年第9期586-604,共19页
In this study, the author will investigate and utilize advanced machine learning models related to two different methodologies to determine the best and most effective way to predict individuals with heart failure and... In this study, the author will investigate and utilize advanced machine learning models related to two different methodologies to determine the best and most effective way to predict individuals with heart failure and cardiovascular diseases. The first methodology involves a list of classification machine learning algorithms, and the second methodology involves the use of a deep learning algorithm known as MLP or Multilayer Perceptrons. Globally, hospitals are dealing with cases related to cardiovascular diseases and heart failure as they are major causes of death, not only for overweight individuals but also for those who do not adopt a healthy diet and lifestyle. Often, heart failures and cardiovascular diseases can be caused by many factors, including cardiomyopathy, high blood pressure, coronary heart disease, and heart inflammation [1]. Other factors, such as irregular shocks or stress, can also contribute to heart failure or a heart attack. While these events cannot be predicted, continuous data from patients’ health can help doctors predict heart failure. Therefore, this data-driven research utilizes advanced machine learning and deep learning techniques to better analyze and manipulate the data, providing doctors with informative decision-making tools regarding a person’s likelihood of experiencing heart failure. In this paper, the author employed advanced data preprocessing and cleaning techniques. Additionally, the dataset underwent testing using two different methodologies to determine the most effective machine-learning technique for producing optimal predictions. The first methodology involved employing a list of supervised classification machine learning algorithms, including Naïve Bayes (NB), KNN, logistic regression, and the SVM algorithm. The second methodology utilized a deep learning (DL) algorithm known as Multilayer Perceptrons (MLPs). This algorithm provided the author with the flexibility to experiment with different layer sizes and activation functions, such as ReLU, logistic (sigmoid), and Tanh. Both methodologies produced optimal models with high-level accuracy rates. The first methodology involves a list of supervised machine learning algorithms, including KNN, SVM, Adaboost, Logistic Regression, Naive Bayes, and Decision Tree algorithms. They achieved accuracy rates of 86%, 89%, 89%, 81%, 79%, and 99%, respectively. The author clearly explained that Decision Tree algorithm is not suitable for the dataset at hand due to overfitting issues. Therefore, it was discarded as an optimal model to be used. However, the latter methodology (Neural Network) demonstrated the most stable and optimal accuracy, achieving over 87% accuracy while adapting well to real-life situations and requiring low computing power overall. A performance assessment and evaluation were carried out based on a confusion matrix report to demonstrate feasibility and performance. The author concluded that the performance of the model in real-life situations can advance not only the medical field of science but also mathematical concepts. Additionally, the advanced preprocessing approach behind the model can provide value to the Data Science community. The model can be further developed by employing various optimization techniques to handle even larger datasets related to heart failures. Furthermore, different neural network algorithms can be tested to explore alternative approaches and yield different results. 展开更多
关键词 Heart Disease Prediction Cardiovascular Disease Machine Learning Algorithms Lazy Predict Multilayer perceptrons (MLPs) Data Science Techniques and Analysis Deep Learning Activation Functions
下载PDF
基于灰色关联度和Shapley值的区间组合预测模型及其应用 被引量:4
16
作者 陈勤勤 陈华友 韩冰 《安徽大学学报(自然科学版)》 CAS 北大核心 2023年第4期16-24,共9页
在不确定环境下,区间数是复杂系统一种信息表达形式.论文在单项区间预测的基础上,提出单项预测方法与实际值序列之间的灰色关联度作为精度的度量准则,构建区间型组合预测模型.考虑模型求解的复杂性,从对策论的角度出发,把组合预测方法... 在不确定环境下,区间数是复杂系统一种信息表达形式.论文在单项区间预测的基础上,提出单项预测方法与实际值序列之间的灰色关联度作为精度的度量准则,构建区间型组合预测模型.考虑模型求解的复杂性,从对策论的角度出发,把组合预测方法视为一个合作对策,单项预测方法视为合作对策的局中人,灰色关联度作为度量合作对策的收益函数,按照合作对策中Shapley值法在各单项预测模型中进行分配,从而给出组合预测权系数确定的新思路.为了验证模型的有效性,利用西德克萨斯中质原油现货价格,针对论文提出的组合模型进行比较分析,计算结果验证了论文提出的模型的可行性与有效性. 展开更多
关键词 区间组合预测 灰色关联度 SHAPLEY值 MLP(multilayer perceptron)模型 Holt指数平滑模型 SVM(support vector machine)模型
下载PDF
Constitutive modelling of idealised granular materials using machine learning method 被引量:1
17
作者 Mengmeng Wu Zhangqi Xia Jianfeng Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期1038-1051,共14页
Predicting the constitutive response of granular soils is a fundamental goal in geomechanics.This paper presents a machine learning(ML)framework for the prediction of the stress-strain behaviour and shearinduced conta... Predicting the constitutive response of granular soils is a fundamental goal in geomechanics.This paper presents a machine learning(ML)framework for the prediction of the stress-strain behaviour and shearinduced contact fabric evolution of an idealised granular material subject to triaxial shearing.The MLbased framework is comprised of a set of mini-triaxial tests which provide a benchmark for the setup and validation of the discrete element method(DEM)model of the granular materials,a parametric DEM simulation programme of virtual triaxial tests which provides datasets of micro-and macro-mechanical information,as well as a multi-layer perceptron(MLP)neural network which is trained and tested using the DEM-based datasets.The ML model only requires the initial void ratio of the granular sample as the input for predicting its constitutive response.The excellent agreement between the ML model prediction and experimental test and DEM simulation results indicates that the MLebased modelling approach is capable of capturing accurately the effects of initial void ratio on the constitutive behaviour of idealised granular materials,bypassing the need to incorporate the complex micromechanics underlying the macroscopic mechanical behaviour of granular materials.Lastly,a detailed comparison between the used MLP model and long short-term memory(LSTM)model was made from the perspective of technical algorithm,prediction accuracy,and computational efficiency. 展开更多
关键词 Machine learning(ML) Multi-layer perceptron(MLP) Contact fabric Granular material Discrete element method(DEM)
下载PDF
Multi-objective optimization of the cathode catalyst layer micro-composition of polymer electrolyte membrane fuel cells using a multi-scale,two-phase fuel cell model and data-driven surrogates 被引量:1
18
作者 Neil Vaz Jaeyoo Choi +3 位作者 Yohan Cha Jihoon Kong Yooseong Park Hyunchul Ju 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期28-41,I0003,共15页
Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectivenes... Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectiveness of using platinum(Pt)in them.The cathode catalyst layer(CL)is considered a core component in PEMFCs,and its composition often considerably affects the cell performance(V_(cell))also PEMFC fabrication and production(C_(stack))costs.In this study,a data-driven multi-objective optimization analysis is conducted to effectively evaluate the effects of various cathode CL compositions on Vcelland Cstack.Four essential cathode CL parameters,i.e.,platinum loading(L_(Pt)),weight ratio of ionomer to carbon(wt_(I/C)),weight ratio of Pt to carbon(wt_(Pt/c)),and porosity of cathode CL(ε_(cCL)),are considered as the design variables.The simulation results of a three-dimensional,multi-scale,two-phase comprehensive PEMFC model are used to train and test two famous surrogates:multi-layer perceptron(MLP)and response surface analysis(RSA).Their accuracies are verified using root mean square error and adjusted R^(2).MLP which outperforms RSA in terms of prediction capability is then linked to a multi-objective non-dominated sorting genetic algorithmⅡ.Compared to a typical PEMFC stack,the results of the optimal study show that the single-cell voltage,Vcellis improved by 28 m V for the same stack price and the stack cost evaluated through the U.S department of energy cost model is reduced by$5.86/k W for the same stack performance. 展开更多
关键词 Polymer electrolyte membrane fuel cell Surrogate modeling Multi-layer perceptron(MLP) Response surface analysis(RSA) Non-dominated sorting genetic algorithmⅡ(NSGAⅡ)
下载PDF
Deep Reinforcement Learning Based Spectrum Prediction for Bursty Bands
19
作者 Tao Peng Chao Yang +3 位作者 Peiliang Zuo Xinyue Wang Rongrong Qian Wenbo Wang 《China Communications》 SCIE CSCD 2023年第7期241-257,共17页
Spectrum prediction plays an important role for the secondary user(SU)to utilize the shared spectrum resources.However,currently utilized prediction methods are not well applied to spectrum with high burstiness,as par... Spectrum prediction plays an important role for the secondary user(SU)to utilize the shared spectrum resources.However,currently utilized prediction methods are not well applied to spectrum with high burstiness,as parameters of prediction models cannot be adjusted properly.This paper studies the prediction problem of bursty bands.Specifically,we first collect real Wi Fi transmission data in 2.4GHz Industrial,Scientific,Medical(ISM)band which is considered to have bursty characteristics.Feature analysis of the data indicates that the spectrum occupancy law of the data is time-variant,which suggests that the performance of commonly used single prediction model could be restricted.Considering that the match between diverse spectrum states and multiple prediction models may essentially improve the prediction performance,we then propose a deep-reinforcement learning based multilayer perceptron(DRL-MLP)method to address this matching problem.The state space of the method is composed of feature vectors,and each of the vectors contains multi-dimensional feature values.Meanwhile,the action space consists of several multilayer perceptrons(MLPs)that are trained on the basis of multiple classified data sets.We finally conduct experiments with the collected real data and simulations with generated data to verify the performance of the proposed method.The results demonstrate that the proposed method significantly outperforms the stateof-the-art methods in terms of the prediction accuracy. 展开更多
关键词 spectrum prediction BURSTINESS ISM band IEEE 802.11 deep-reinforcement learning multilayer perceptron
下载PDF
Deep Learning Approach for Automatic Cardiovascular Disease Prediction Employing ECG Signals
20
作者 Muhammad Tayyeb Muhammad Umer +6 位作者 Khaled Alnowaiser Saima Sadiq Ala’Abdulmajid Eshmawi Rizwan Majeed Abdullah Mohamed Houbing Song Imran Ashraf 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1677-1694,共18页
Cardiovascular problems have become the predominant cause of death worldwide and a rise in the number of patients has been observed lately.Currently,electrocardiogram(ECG)data is analyzed by medical experts to determi... Cardiovascular problems have become the predominant cause of death worldwide and a rise in the number of patients has been observed lately.Currently,electrocardiogram(ECG)data is analyzed by medical experts to determine the cardiac abnormality,which is time-consuming.In addition,the diagnosis requires experienced medical experts and is error-prone.However,automated identification of cardiovascular disease using ECGs is a challenging problem and state-of-the-art performance has been attained by complex deep learning architectures.This study proposes a simple multilayer perceptron(MLP)model for heart disease prediction to reduce computational complexity.ECG dataset containing averaged signals with window size 10 is used as an input.Several competing deep learning and machine learning models are used for comparison.K-fold cross-validation is used to validate the results.Experimental outcomes reveal that the MLP-based architecture can produce better outcomes than existing approaches with a 94.40%accuracy score.The findings of this study show that the proposed system achieves high performance indicating that it has the potential for deployment in a real-world,practical medical environment. 展开更多
关键词 Cardiovascular disease prediction ELECTROCARDIOGRAMS deep learning multilayer perceptron
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部