Current-voltage electrical behavior of in situ microfibrillar carbon black (CB)/poly(ethylene terephthalate) (PET)/polyethylene (PE) (m-CB/PET/PE) composites with various CB concentrations at ambient tempera...Current-voltage electrical behavior of in situ microfibrillar carbon black (CB)/poly(ethylene terephthalate) (PET)/polyethylene (PE) (m-CB/PET/PE) composites with various CB concentrations at ambient temperatures was studied under a direct-current electric field. The current-voltage (l-V) curves exhibited nonlinearity beyond a critical value of voltage. The dynamic random resistor network (DRRN) model was adopted to semi-qualitatively explain the nonlinear conduction behavior of m-CB/PET/PE composites. Macroscopic nonlinearity originated from the interfacial interactions between CB/PET micro fibrils and additional conduction channels. Combined with the special conductive networks, an illustration was proposed to interpret the nonlinear 1-V characteristics by a field emission or tunneling mechanism between CB particles in the CB/PET micro fibers intersections.展开更多
基金financially supported by the National Science Fund for Distinguished Young Scholars (No. 50925311)National Science Fund of China (Nos. 20976112, 51033004)
文摘Current-voltage electrical behavior of in situ microfibrillar carbon black (CB)/poly(ethylene terephthalate) (PET)/polyethylene (PE) (m-CB/PET/PE) composites with various CB concentrations at ambient temperatures was studied under a direct-current electric field. The current-voltage (l-V) curves exhibited nonlinearity beyond a critical value of voltage. The dynamic random resistor network (DRRN) model was adopted to semi-qualitatively explain the nonlinear conduction behavior of m-CB/PET/PE composites. Macroscopic nonlinearity originated from the interfacial interactions between CB/PET micro fibrils and additional conduction channels. Combined with the special conductive networks, an illustration was proposed to interpret the nonlinear 1-V characteristics by a field emission or tunneling mechanism between CB particles in the CB/PET micro fibers intersections.