In this study, polyethylene-terephthalate (PET) nonwovens are treated using an atmospheric plasma and the effects of the treatment time, treatment power and discharge distance on the ability of water-penetration int...In this study, polyethylene-terephthalate (PET) nonwovens are treated using an atmospheric plasma and the effects of the treatment time, treatment power and discharge distance on the ability of water-penetration into the nonwovens are investigated. The result indicates that the method can improve the wettability of PET nonwovens remarkably, but the aging decay of the sample's wettability is found to be notable as a function of the storage time after treatment due to the internal rotation of the single bond of surface macromolecules. As shown by SEM and XPS analysis, the etching and surface reaction are significant, and water-penetration weight is found to increase remarkably with the increasing power. This variation can be attributed to momentum transfer and enhanced higher-energy particle excitation.展开更多
A novel antibacterial material (L-PET) was prepared by immobilizing ε-polylysine on polyethylene terephthalate (PET) nonwoven fabrics. Surface modifications of the fabric were performed by using a chemical modifi...A novel antibacterial material (L-PET) was prepared by immobilizing ε-polylysine on polyethylene terephthalate (PET) nonwoven fabrics. Surface modifications of the fabric were performed by using a chemical modification procedure where carboxyl groups were prepared on the PET surface, a coupling agent was grafted, and the ε-polylysine was immobilized. Scanning electron microscopy (SEM) was used to analyze the surface morphology of the fabrics, while the toluidine blue method and X-ray photoelectron spectroscopy (XPS) were used to evaluate the grafting densities. The antibacterial activities of the L-PET were investigated by using the shaking-flask method. The electron micrographs showed that the surface of the blank PET and the modified fabrics did not change. The results of XPS analysis confirmed that ε-polylysine was successfully grafted onto the surface of PET. The results of the antibacterial experiments showed that L-PET fabrics had excellent antibacterial activity against Escherichia coli and Staphylococcus aureus, and that L-PET fabrics were stable in storage for at least two years.展开更多
The influence of the processing parameters on the properties of needle-punched composite geotextiles,compounded by polypropylene filament woven-fabrics and nonwoven fabrics is studied by using orthogonal design method...The influence of the processing parameters on the properties of needle-punched composite geotextiles,compounded by polypropylene filament woven-fabrics and nonwoven fabrics is studied by using orthogonal design method. The relationship between tensile strength and peeling strength is discussed. The experimental results are offered as reference.展开更多
本文通过在聚丙烯腈隔膜中植入PET无纺布提高了隔膜的热稳定性和力学性能,通过添加PEGDMA进行热交联提高了PAN的耐化学腐蚀性和降低PAN的结晶度,PEGDMA同时有利于提高PAN多孔膜的孔隙率,PAN通过倒相法成孔,制备出了孔隙率高达43.38%、...本文通过在聚丙烯腈隔膜中植入PET无纺布提高了隔膜的热稳定性和力学性能,通过添加PEGDMA进行热交联提高了PAN的耐化学腐蚀性和降低PAN的结晶度,PEGDMA同时有利于提高PAN多孔膜的孔隙率,PAN通过倒相法成孔,制备出了孔隙率高达43.38%、离子电导率高达1.56m S cm-1的锂电池隔膜,经150℃高温测试隔膜的热收缩率均低于5%,经过2h以及12h离子电导率对比发现经过热交联的锂电池隔膜的耐腐蚀性增强。展开更多
文摘In this study, polyethylene-terephthalate (PET) nonwovens are treated using an atmospheric plasma and the effects of the treatment time, treatment power and discharge distance on the ability of water-penetration into the nonwovens are investigated. The result indicates that the method can improve the wettability of PET nonwovens remarkably, but the aging decay of the sample's wettability is found to be notable as a function of the storage time after treatment due to the internal rotation of the single bond of surface macromolecules. As shown by SEM and XPS analysis, the etching and surface reaction are significant, and water-penetration weight is found to increase remarkably with the increasing power. This variation can be attributed to momentum transfer and enhanced higher-energy particle excitation.
基金Funded by the National Major Science & Technology Specific Projects (2009ZX10004-703)
文摘A novel antibacterial material (L-PET) was prepared by immobilizing ε-polylysine on polyethylene terephthalate (PET) nonwoven fabrics. Surface modifications of the fabric were performed by using a chemical modification procedure where carboxyl groups were prepared on the PET surface, a coupling agent was grafted, and the ε-polylysine was immobilized. Scanning electron microscopy (SEM) was used to analyze the surface morphology of the fabrics, while the toluidine blue method and X-ray photoelectron spectroscopy (XPS) were used to evaluate the grafting densities. The antibacterial activities of the L-PET were investigated by using the shaking-flask method. The electron micrographs showed that the surface of the blank PET and the modified fabrics did not change. The results of XPS analysis confirmed that ε-polylysine was successfully grafted onto the surface of PET. The results of the antibacterial experiments showed that L-PET fabrics had excellent antibacterial activity against Escherichia coli and Staphylococcus aureus, and that L-PET fabrics were stable in storage for at least two years.
文摘The influence of the processing parameters on the properties of needle-punched composite geotextiles,compounded by polypropylene filament woven-fabrics and nonwoven fabrics is studied by using orthogonal design method. The relationship between tensile strength and peeling strength is discussed. The experimental results are offered as reference.
文摘本文通过在聚丙烯腈隔膜中植入PET无纺布提高了隔膜的热稳定性和力学性能,通过添加PEGDMA进行热交联提高了PAN的耐化学腐蚀性和降低PAN的结晶度,PEGDMA同时有利于提高PAN多孔膜的孔隙率,PAN通过倒相法成孔,制备出了孔隙率高达43.38%、离子电导率高达1.56m S cm-1的锂电池隔膜,经150℃高温测试隔膜的热收缩率均低于5%,经过2h以及12h离子电导率对比发现经过热交联的锂电池隔膜的耐腐蚀性增强。