A new method called satisfactory optimization method is proposed to design IIR (Infinite Impulse Response) digital filters, and the satisfactory optimization model is presented. The detailed algorithm of designing IIR...A new method called satisfactory optimization method is proposed to design IIR (Infinite Impulse Response) digital filters, and the satisfactory optimization model is presented. The detailed algorithm of designing IIR digital filters using satisfactory optimization method is described. By ~using quantum genetic algorithm characterized by rapid convergence and good global search capability, the satisfying solutions are ~achieved in the experiment of designing lowpass and bandpass IIR digital filters. Experimental results show that the performances of IIR filters designed by the introduced method are better than those by traditional methods.展开更多
In this paper we present a filter-trust-region algorithm for solving LC1 unconstrained optimization problems which uses the second Dini upper directional derivative. We establish the global convergence of the algorith...In this paper we present a filter-trust-region algorithm for solving LC1 unconstrained optimization problems which uses the second Dini upper directional derivative. We establish the global convergence of the algorithm under reasonable assumptions.展开更多
In the present study,we propose to integrate the bilateral filter into the Shepard-interpolation-based method for the optimization of composite structures.The bilateral filter is used to avoid defects in the structure...In the present study,we propose to integrate the bilateral filter into the Shepard-interpolation-based method for the optimization of composite structures.The bilateral filter is used to avoid defects in the structure that may arise due to the gap/overlap of adjacent fiber tows or excessive curvature of fiber tows.According to the bilateral filter,sensitivities at design points in the filter area are smoothed by both domain filtering and range filtering.Then,the filtered sensitivities are used to update the design variables.Through several numerical examples,the effectiveness of the method was verified.展开更多
A compact tunable guided-mode resonant filter (GMRF) in the telecommunication region near the 1550 nm wave-length is proposed in this paper. Particle swarm optimization (PSO) is used to design the GMRF. The tunabi...A compact tunable guided-mode resonant filter (GMRF) in the telecommunication region near the 1550 nm wave-length is proposed in this paper. Particle swarm optimization (PSO) is used to design the GMRF. The tunability of the GMRF is achieved by an MEMS-based physical movement (in the horizontal or vertical direction) combined with an incident angle in a certain range. The results show that the resonant wavelength tuning of 110 nm (140mm) is obtained by horizontal movement of 168 nm (vertical movement of 435 nm) combined with an about 11° variation of incident angle.展开更多
In this paper, a new method of filtering for Lipschitz nonlinear systems is proposed in the form of an LMI optimization problem. The proposed filter has guaranteed decay rate (exponential convergence) and is robust ag...In this paper, a new method of filtering for Lipschitz nonlinear systems is proposed in the form of an LMI optimization problem. The proposed filter has guaranteed decay rate (exponential convergence) and is robust against unknown exogenous disturbance. In addition, thanks to the linearity of the proposed LMIs in the admissible Lipschitz constant, it can be maximized via LMI optimization. This adds an extra important feature to the observer, robustness against nonlinear uncertainty. Explicit bound on the tolerable nonlinear uncertainty is derived. The new LMI formulation also allows optimizations over the disturbance attenuation level ( cost). Then, the admissible Lipschitz constant and the disturbance attenuation level of the filter are simultaneously optimized through LMI multiobjective optimization.展开更多
Controlled thermonuclear reactors require consistent monitoring of plasma in the toroidal chamber.Better working conditions of such machines can be monitored by analyzing its radiations.Various wavelengths such as 656...Controlled thermonuclear reactors require consistent monitoring of plasma in the toroidal chamber.Better working conditions of such machines can be monitored by analyzing its radiations.Various wavelengths such as 656.3,486.1,464.7 nm are quite significant which are used for health monitoring of thermonuclear machines.The optical thinfilmfilters which work on construc-tive and destructive interference are the ideal choices.Thesefilters are multi-layered with a pair of high and low refractive index dielectric materials.Significantly high transmission index at the desired wavelength and relatively low transmission at the other wavelengths are desired.With this as the objective,it is necessary to design thefilter.Various optimization techniques are used for identifying the suitable design of thefilters.To choose the parameter combination that provides the most excellent performance,optimization of the design para-meters is entailed.The goal of this work is to improve the optical bandfilter using the Bald eagle search optimization(BES)method.The ideal design is determined by assessing several characteristics such as thickness,refractive index,Full-Width at Half-Maximum(FWHM),and the impact of choosing optical properties,which increases transmission potential.Initially,an alternate multi-layer stack with 28,30,and 32 layers is created by altering the thickness while keeping the dielectric substances high and low refractive indices constant.By adjusting the thickness of each layer,the BES algorithm achieves the best practical solution.The proposed method is implemented using MATLAB and the outcomes show the efficacy of the proposed technique.The transmittance,reflectance,and FWHM using the pro-posed BES are found to be 99.9356%,0.065%,and 1.2 nm respectively.展开更多
This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state t...This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state transition stage,and simultaneously incorporates the newest observations into the proposal distribution in the update stage.In the proposed approach,likelihood measure functions involving multiple features are presented to enhance the performance of model fitting.Furthermore,the multi-feature weights are self-adaptively adjusted by a PSO algorithm throughout the tracking process.There are three main contributions.Firstly,the PSO algorithm is fused into the PF framework,which can efficiently alleviate the particles degeneracy phenomenon.Secondly,an effective convergence criterion for the PSO algorithm is explored,which can avoid particles getting stuck in local minima and maintain a greater particle diversity.Finally,a multi-feature weight self-adjusting strategy is proposed,which can significantly improve the tracking robustness and accuracy.Experiments performed on several challenging public video sequences demonstrate that the proposed tracking approach achieves a considerable performance.展开更多
In a limited number of ensembles, some samples do not adequately reflect the true atmospheric state and can in turn affect forecast performance. This study explored the feasibility of sample optimization using the ens...In a limited number of ensembles, some samples do not adequately reflect the true atmospheric state and can in turn affect forecast performance. This study explored the feasibility of sample optimization using the ensemble Kalman filter(EnKF) for a simulation of the 2014 Super Typhoon Rammasun, which made landfall in southern China in July 2014. Under the premise of sufficient ensemble spread, keeping samples with a good fit to observations and eliminating those with poor fit can affect the performance of En KF. In the sample optimization, states were selected based on the sample spatial correlation between the ensemble state and observations. The method discarded ensemble states that were less representative and, to maintain the overall ensemble size, generated new ensemble states by reproducing them from ensemble states with a good fit by adding random noise. Sample selection was performed based on radar echo data. Results showed that applying En KF with optimized samples improved the estimated track, intensity,precipitation distribution, and inner-core structure of Typhoon Rammasun. Therefore, the authors proposed that distinguishing between samples with good and poor fits is vital for ensemble prediction, suggesting that sample optimization is necessary to the effective use of En KF.展开更多
This paper deals with an optimization design method for the Gabor filters based on the analysis of an iris texture model. By means of analyzing the properties of an iris texture image, the energy distribution regulari...This paper deals with an optimization design method for the Gabor filters based on the analysis of an iris texture model. By means of analyzing the properties of an iris texture image, the energy distribution regularity of the iris texture image measured by the average power spectrum density is exploited, and the theoretical ranges of the efficient valued frequency and orientation parameters can also be deduced. The analysis shows that the energy distribution of the iris texture is generally centralized around lower frequencies in the spatial frequency domain. Accordingly, an iterative algorithm is designed to optimize the Gabor parameter field. The experimental results indicate the validity of the theory and efficiency of the algorithm.展开更多
Near-infrared (NIR) spectroscopy combined with chemometrics methods was applied to the rapid and reagent-free analysis of serum urea nitrogen (SUN). The mul-partitions modeling was performed to achieve parameter stabi...Near-infrared (NIR) spectroscopy combined with chemometrics methods was applied to the rapid and reagent-free analysis of serum urea nitrogen (SUN). The mul-partitions modeling was performed to achieve parameter stability. A large-scale parameter cyclic and global optimization platform for Norris derivative filter (NDF) of three parameters (the derivative order: d, the number of smoothing points: s and the number of differential gaps: g) was developed with PLS regression. Meantime, the parameters’ adaptive analysis of NDF algorithm was also given, and achieved a significantly better modeling effect than one without spectral pre-processing. After eliminating the interference wavebands of saturated absorption, the modeling performance was further improved. In validation, the root mean square error (SEP), correlation coefficient (RP) for prediction and the ratio of performance to deviation (RPD) were 1.66 mmol?L-1, 0.966 and 4.7, respectively. The results showed that the high-precision analysis of SUN was feasibility based on NIR spectroscopy and Norris-PLS. The global optimization method of NDF is also expected to be applied to other analysis objects.展开更多
Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a la...Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a large number of equality and inequality constraints. Based on the primal-dual interior-point algorithm, the algorithm maintains an updating “filter” at each iteration in order to decide whether to admit correction of iteration point which can avoid effectively oscillation due to the conflict between the decrease of objective function and the satisfaction of constraints and ensure the global convergence. Moreover, the “filter” improves computational efficiency because it filters the unnecessary iteration points. The calculation results of a practical power system indicate that the algorithm can effectively deal with the large number of inequality constraints of the fuzzy model of reactive power optimization and satisfy the requirement of online calculation which realizes to decrease the network loss and maintain specified margins of voltage.展开更多
In this paper, we propose a retrospective filter trust region algorithm for unconstrained optimization, which is based on the framework of the retrospective trust region method and associated with the technique of the...In this paper, we propose a retrospective filter trust region algorithm for unconstrained optimization, which is based on the framework of the retrospective trust region method and associated with the technique of the multi-dimensional filter. The new algorithm gives a good estimation of trust region radius, relaxes the condition of accepting a trial step for the usual trust region methods. Under reasonable assumptions, we analyze the global convergence of the new method and report the preliminary results of numerical tests. We compare the results with those of the basic trust region algorithm, the filter trust region algorithm and the retrospective trust region algorithm, which shows the effectiveness of the new algorithm.展开更多
Collaborative filtering algorithm is the most widely used and recommended algorithm in major e-commerce recommendation systems nowadays. Concerning the problems such as poor adaptability and cold start of traditional ...Collaborative filtering algorithm is the most widely used and recommended algorithm in major e-commerce recommendation systems nowadays. Concerning the problems such as poor adaptability and cold start of traditional collaborative filtering algorithms, this paper is going to come up with improvements and construct a hybrid collaborative filtering algorithm model which will possess excellent scalability. Meanwhile, this paper will also optimize the process based on the parameter selection of genetic algorithm and demonstrate its pseudocode reference so as to provide new ideas and methods for the study of parameter combination optimization in hybrid collaborative filtering algorithm.展开更多
It is a time-consuming and often iterative procedure to determine design parameters based on fine, accurate but expensive, models. To decrease the number of fine model evaluations, space mapping techniques may be empl...It is a time-consuming and often iterative procedure to determine design parameters based on fine, accurate but expensive, models. To decrease the number of fine model evaluations, space mapping techniques may be employed. In this approach, it is assumed both fine model and coarse, fast but inaccurate, one are available. First, the coarse model is optimized to obtain design parameters satisfying design objectives. Next, auxiliary parameters are calibrated to match coarse and fine models’ responses. Then, the improved coarse model is re-optimized to obtain new design parameters. The design procedure is stopped when a satisfactory solution is reached. In this paper, an implicit space mapping method is used to design a microstrip low-pass elliptic filter. Simulation results show that only two fine model evaluations are sufficient to get satisfactory results.展开更多
Multi-carrier faster-than-Nyquist(MFTN)can improve the spectrum efficiency(SE).In this paper,we first analyze the benefit of time frequency packing MFTN(TFP-MFTN).Then,we propose an efficient digital implementation fo...Multi-carrier faster-than-Nyquist(MFTN)can improve the spectrum efficiency(SE).In this paper,we first analyze the benefit of time frequency packing MFTN(TFP-MFTN).Then,we propose an efficient digital implementation for TFP-MFTN based on filter bank multicarrier modulation.The time frequency packing ratio pair in our proposed implementation scheme is optimized with the SE criterion.Next,the joint optimization for the coded modulation MFTN based on extrinsic information transfer(EXIT)chart is performed.The Monte-Carlo simulations are carried out to verify performance gain of the joint inner and outer code optimization.Simulation results demonstrate that the TFPMFTN has a 0.8 dB and 0.9 dB gain comparing to time packing MFTN(TP-MFTN)and higher order Nyquist at same SE,respectively;the TFP-MFTN with optimized low density parity check(LDPC)code has a 2.9 dB gain comparing to that with digital video broadcasting(DVB)LDPC.Compared with previous work on TFP-MFTN(SE=1.55 bit/s/Hz),the SE of our work is improved by 29%and our work has a 4.1 dB gain at BER=1×10^(-5).展开更多
The reasonable measuring of particle weight and effective sampling of particle state are consid- ered as two important aspects to obtain better estimation precision in particle filter. Aiming at the comprehensive trea...The reasonable measuring of particle weight and effective sampling of particle state are consid- ered as two important aspects to obtain better estimation precision in particle filter. Aiming at the comprehensive treatment of above problems, a novel two-stage prediction and update particle filte- ring algorithm based on particle weight optimization in multi-sensor observation is proposed. Firstly, combined with the construction of muhi-senor observation likelihood function and the weight fusion principle, a new particle weight optimization strategy in multi-sensor observation is presented, and the reliability and stability of particle weight are improved by decreasing weight variance. In addi- tion, according to the prediction and update mechanism of particle filter and unscented Kalman fil- ter, a new realization of particle filter with two-stage prediction and update is given. The filter gain containing the latest observation information is used to directly optimize state estimation in the frame- work, which avoids a large calculation amount and the lack of universality in proposal distribution optimization way. The theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.展开更多
This paper describes the mitigation of harmonics in source and neutral current in three phase four wire system based on 4-leg shunt active power filter under balanced and unbalanced load conditions. Particle Swarm Opt...This paper describes the mitigation of harmonics in source and neutral current in three phase four wire system based on 4-leg shunt active power filter under balanced and unbalanced load conditions. Particle Swarm Optimization (PSO) and conventional Proportional Integral (PI) controller are used as control techniques to analyze the control performance of 4-leg shunt active power filter. The synchronous reference frame (SRF) method is used to extract reference current in 4-leg shunt active filter. The Hysteresis Current Controller (HCC) is used to generate gate pulses for Voltage Source Inverter (VSI) based 4-leg shunt active power filter. The proposed PSO technique gives less percentage of Total Harmonic Distortion (THD) value in source and neutral current and settling time of the DC capacitor voltage compared to conventional PI controller technique. The model of the proposed system performance was validated using MATLAB/Simulink environment.展开更多
We discuss a filter-based pattern search method for unconstrained optimization in this paper. For the purpose to broaden the search range we use both filter technique and frames, which are fragments of grids, to provi...We discuss a filter-based pattern search method for unconstrained optimization in this paper. For the purpose to broaden the search range we use both filter technique and frames, which are fragments of grids, to provide a new criterion of iterate acceptance. The convergence can be ensured under some conditions. The numerical result shows that this method is practical and efficient.展开更多
Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detectio...Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detection algorithm with limited computational resources,this study improves the detection performance in terms of optimized features and interference filtering.The accuracy of the algorithm is improved by refining the combination of gesture features using a self-constructed dataset,and biometric filtering is introduced to reduce the interference of inanimate object motion.Finally,experiments demonstrate the effectiveness of the proposed algorithm in both mitigating interference from inanimate objects and accurately recognizing gestures.Results show a notable 93.29%average reduction in false detections achieved through the integration of biometric filtering into the algorithm’s interpretation of target movements.Additionally,the algorithm adeptly identifies the six gestures with an average accuracy of 96.84%on embedded systems.展开更多
A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filte...A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively.展开更多
文摘A new method called satisfactory optimization method is proposed to design IIR (Infinite Impulse Response) digital filters, and the satisfactory optimization model is presented. The detailed algorithm of designing IIR digital filters using satisfactory optimization method is described. By ~using quantum genetic algorithm characterized by rapid convergence and good global search capability, the satisfying solutions are ~achieved in the experiment of designing lowpass and bandpass IIR digital filters. Experimental results show that the performances of IIR filters designed by the introduced method are better than those by traditional methods.
基金Supported by CERG: CityU 101005 of the Government of Hong Kong SAR, Chinathe National Natural ScienceFoundation of China, the Specialized Research Fund of Doctoral Program of Higher Education of China (Grant No.20040319003)the Natural Science Fund of Jiangsu Province of China (Grant No. BK2006214)
文摘In this paper we present a filter-trust-region algorithm for solving LC1 unconstrained optimization problems which uses the second Dini upper directional derivative. We establish the global convergence of the algorithm under reasonable assumptions.
基金This research work was supported by the National Natural Science Foundation of China(Grant No.51975227)the Natural Science Foundation for Distinguished Young Scholars of Hubei Province,China(Grant No.2017CFA044).
文摘In the present study,we propose to integrate the bilateral filter into the Shepard-interpolation-based method for the optimization of composite structures.The bilateral filter is used to avoid defects in the structure that may arise due to the gap/overlap of adjacent fiber tows or excessive curvature of fiber tows.According to the bilateral filter,sensitivities at design points in the filter area are smoothed by both domain filtering and range filtering.Then,the filtered sensitivities are used to update the design variables.Through several numerical examples,the effectiveness of the method was verified.
基金Project supported by the National High-Tech Research and Development Program of China(Grant No.2011 AA050518)
文摘A compact tunable guided-mode resonant filter (GMRF) in the telecommunication region near the 1550 nm wave-length is proposed in this paper. Particle swarm optimization (PSO) is used to design the GMRF. The tunability of the GMRF is achieved by an MEMS-based physical movement (in the horizontal or vertical direction) combined with an incident angle in a certain range. The results show that the resonant wavelength tuning of 110 nm (140mm) is obtained by horizontal movement of 168 nm (vertical movement of 435 nm) combined with an about 11° variation of incident angle.
文摘In this paper, a new method of filtering for Lipschitz nonlinear systems is proposed in the form of an LMI optimization problem. The proposed filter has guaranteed decay rate (exponential convergence) and is robust against unknown exogenous disturbance. In addition, thanks to the linearity of the proposed LMIs in the admissible Lipschitz constant, it can be maximized via LMI optimization. This adds an extra important feature to the observer, robustness against nonlinear uncertainty. Explicit bound on the tolerable nonlinear uncertainty is derived. The new LMI formulation also allows optimizations over the disturbance attenuation level ( cost). Then, the admissible Lipschitz constant and the disturbance attenuation level of the filter are simultaneously optimized through LMI multiobjective optimization.
文摘Controlled thermonuclear reactors require consistent monitoring of plasma in the toroidal chamber.Better working conditions of such machines can be monitored by analyzing its radiations.Various wavelengths such as 656.3,486.1,464.7 nm are quite significant which are used for health monitoring of thermonuclear machines.The optical thinfilmfilters which work on construc-tive and destructive interference are the ideal choices.Thesefilters are multi-layered with a pair of high and low refractive index dielectric materials.Significantly high transmission index at the desired wavelength and relatively low transmission at the other wavelengths are desired.With this as the objective,it is necessary to design thefilter.Various optimization techniques are used for identifying the suitable design of thefilters.To choose the parameter combination that provides the most excellent performance,optimization of the design para-meters is entailed.The goal of this work is to improve the optical bandfilter using the Bald eagle search optimization(BES)method.The ideal design is determined by assessing several characteristics such as thickness,refractive index,Full-Width at Half-Maximum(FWHM),and the impact of choosing optical properties,which increases transmission potential.Initially,an alternate multi-layer stack with 28,30,and 32 layers is created by altering the thickness while keeping the dielectric substances high and low refractive indices constant.By adjusting the thickness of each layer,the BES algorithm achieves the best practical solution.The proposed method is implemented using MATLAB and the outcomes show the efficacy of the proposed technique.The transmittance,reflectance,and FWHM using the pro-posed BES are found to be 99.9356%,0.065%,and 1.2 nm respectively.
基金supported by the Chinese Ministry of Science and Intergovernmental Cooperation Project (2009DFA12870)the National Science Foundation of China (60974062,60972119)
文摘This paper proposes a particle swarm optimization(PSO) based particle filter(PF) tracking framework,the embedded PSO makes particles move toward the high likelihood area to find the optimal position in the state transition stage,and simultaneously incorporates the newest observations into the proposal distribution in the update stage.In the proposed approach,likelihood measure functions involving multiple features are presented to enhance the performance of model fitting.Furthermore,the multi-feature weights are self-adaptively adjusted by a PSO algorithm throughout the tracking process.There are three main contributions.Firstly,the PSO algorithm is fused into the PF framework,which can efficiently alleviate the particles degeneracy phenomenon.Secondly,an effective convergence criterion for the PSO algorithm is explored,which can avoid particles getting stuck in local minima and maintain a greater particle diversity.Finally,a multi-feature weight self-adjusting strategy is proposed,which can significantly improve the tracking robustness and accuracy.Experiments performed on several challenging public video sequences demonstrate that the proposed tracking approach achieves a considerable performance.
基金National Key Project for Basic Research(973 project)(2015CB452802)National Natural Science Fund(41475102,41675099,41475061)+2 种基金Science and Technology Planning Project of Guangdong Province(2017B020218003,2017B030314140)Natural Science Foundation of Guangdong Province(2016A030313140,2017A030313225)Science and technology project of Guangdong Meteorological Bureau(GRMC2017Q01)
文摘In a limited number of ensembles, some samples do not adequately reflect the true atmospheric state and can in turn affect forecast performance. This study explored the feasibility of sample optimization using the ensemble Kalman filter(EnKF) for a simulation of the 2014 Super Typhoon Rammasun, which made landfall in southern China in July 2014. Under the premise of sufficient ensemble spread, keeping samples with a good fit to observations and eliminating those with poor fit can affect the performance of En KF. In the sample optimization, states were selected based on the sample spatial correlation between the ensemble state and observations. The method discarded ensemble states that were less representative and, to maintain the overall ensemble size, generated new ensemble states by reproducing them from ensemble states with a good fit by adding random noise. Sample selection was performed based on radar echo data. Results showed that applying En KF with optimized samples improved the estimated track, intensity,precipitation distribution, and inner-core structure of Typhoon Rammasun. Therefore, the authors proposed that distinguishing between samples with good and poor fits is vital for ensemble prediction, suggesting that sample optimization is necessary to the effective use of En KF.
文摘This paper deals with an optimization design method for the Gabor filters based on the analysis of an iris texture model. By means of analyzing the properties of an iris texture image, the energy distribution regularity of the iris texture image measured by the average power spectrum density is exploited, and the theoretical ranges of the efficient valued frequency and orientation parameters can also be deduced. The analysis shows that the energy distribution of the iris texture is generally centralized around lower frequencies in the spatial frequency domain. Accordingly, an iterative algorithm is designed to optimize the Gabor parameter field. The experimental results indicate the validity of the theory and efficiency of the algorithm.
文摘Near-infrared (NIR) spectroscopy combined with chemometrics methods was applied to the rapid and reagent-free analysis of serum urea nitrogen (SUN). The mul-partitions modeling was performed to achieve parameter stability. A large-scale parameter cyclic and global optimization platform for Norris derivative filter (NDF) of three parameters (the derivative order: d, the number of smoothing points: s and the number of differential gaps: g) was developed with PLS regression. Meantime, the parameters’ adaptive analysis of NDF algorithm was also given, and achieved a significantly better modeling effect than one without spectral pre-processing. After eliminating the interference wavebands of saturated absorption, the modeling performance was further improved. In validation, the root mean square error (SEP), correlation coefficient (RP) for prediction and the ratio of performance to deviation (RPD) were 1.66 mmol?L-1, 0.966 and 4.7, respectively. The results showed that the high-precision analysis of SUN was feasibility based on NIR spectroscopy and Norris-PLS. The global optimization method of NDF is also expected to be applied to other analysis objects.
文摘Considering the soft constraint characteristics of voltage constraints, the Interior-Point Filter Algorithm is applied to solve the formulation of fuzzy model for the power system reactive power optimization with a large number of equality and inequality constraints. Based on the primal-dual interior-point algorithm, the algorithm maintains an updating “filter” at each iteration in order to decide whether to admit correction of iteration point which can avoid effectively oscillation due to the conflict between the decrease of objective function and the satisfaction of constraints and ensure the global convergence. Moreover, the “filter” improves computational efficiency because it filters the unnecessary iteration points. The calculation results of a practical power system indicate that the algorithm can effectively deal with the large number of inequality constraints of the fuzzy model of reactive power optimization and satisfy the requirement of online calculation which realizes to decrease the network loss and maintain specified margins of voltage.
文摘In this paper, we propose a retrospective filter trust region algorithm for unconstrained optimization, which is based on the framework of the retrospective trust region method and associated with the technique of the multi-dimensional filter. The new algorithm gives a good estimation of trust region radius, relaxes the condition of accepting a trial step for the usual trust region methods. Under reasonable assumptions, we analyze the global convergence of the new method and report the preliminary results of numerical tests. We compare the results with those of the basic trust region algorithm, the filter trust region algorithm and the retrospective trust region algorithm, which shows the effectiveness of the new algorithm.
文摘Collaborative filtering algorithm is the most widely used and recommended algorithm in major e-commerce recommendation systems nowadays. Concerning the problems such as poor adaptability and cold start of traditional collaborative filtering algorithms, this paper is going to come up with improvements and construct a hybrid collaborative filtering algorithm model which will possess excellent scalability. Meanwhile, this paper will also optimize the process based on the parameter selection of genetic algorithm and demonstrate its pseudocode reference so as to provide new ideas and methods for the study of parameter combination optimization in hybrid collaborative filtering algorithm.
文摘It is a time-consuming and often iterative procedure to determine design parameters based on fine, accurate but expensive, models. To decrease the number of fine model evaluations, space mapping techniques may be employed. In this approach, it is assumed both fine model and coarse, fast but inaccurate, one are available. First, the coarse model is optimized to obtain design parameters satisfying design objectives. Next, auxiliary parameters are calibrated to match coarse and fine models’ responses. Then, the improved coarse model is re-optimized to obtain new design parameters. The design procedure is stopped when a satisfactory solution is reached. In this paper, an implicit space mapping method is used to design a microstrip low-pass elliptic filter. Simulation results show that only two fine model evaluations are sufficient to get satisfactory results.
基金supported by the National Natural Science Foundation of China(61961014,61561017)。
文摘Multi-carrier faster-than-Nyquist(MFTN)can improve the spectrum efficiency(SE).In this paper,we first analyze the benefit of time frequency packing MFTN(TFP-MFTN).Then,we propose an efficient digital implementation for TFP-MFTN based on filter bank multicarrier modulation.The time frequency packing ratio pair in our proposed implementation scheme is optimized with the SE criterion.Next,the joint optimization for the coded modulation MFTN based on extrinsic information transfer(EXIT)chart is performed.The Monte-Carlo simulations are carried out to verify performance gain of the joint inner and outer code optimization.Simulation results demonstrate that the TFPMFTN has a 0.8 dB and 0.9 dB gain comparing to time packing MFTN(TP-MFTN)and higher order Nyquist at same SE,respectively;the TFP-MFTN with optimized low density parity check(LDPC)code has a 2.9 dB gain comparing to that with digital video broadcasting(DVB)LDPC.Compared with previous work on TFP-MFTN(SE=1.55 bit/s/Hz),the SE of our work is improved by 29%and our work has a 4.1 dB gain at BER=1×10^(-5).
基金Supported by the National Natural Science Foundations of China(No.61300214,61170243)the Science and Technology Innovation Team Support Plan of Education Department of Henan Province(No.13IRTSTHN021)+2 种基金the Science and Technology Research Key Project of Education Department of Henan Province(No.13A413066)the Basic and Frontier Technology Research Plan of Henan Province(No.132300410148)the Funding Scheme of Young Key Teacher of Henan Province Universities,and the Key Project of Teaching Reform Research of Henan University(No.HDXJJG2013-07)
文摘The reasonable measuring of particle weight and effective sampling of particle state are consid- ered as two important aspects to obtain better estimation precision in particle filter. Aiming at the comprehensive treatment of above problems, a novel two-stage prediction and update particle filte- ring algorithm based on particle weight optimization in multi-sensor observation is proposed. Firstly, combined with the construction of muhi-senor observation likelihood function and the weight fusion principle, a new particle weight optimization strategy in multi-sensor observation is presented, and the reliability and stability of particle weight are improved by decreasing weight variance. In addi- tion, according to the prediction and update mechanism of particle filter and unscented Kalman fil- ter, a new realization of particle filter with two-stage prediction and update is given. The filter gain containing the latest observation information is used to directly optimize state estimation in the frame- work, which avoids a large calculation amount and the lack of universality in proposal distribution optimization way. The theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.
文摘This paper describes the mitigation of harmonics in source and neutral current in three phase four wire system based on 4-leg shunt active power filter under balanced and unbalanced load conditions. Particle Swarm Optimization (PSO) and conventional Proportional Integral (PI) controller are used as control techniques to analyze the control performance of 4-leg shunt active power filter. The synchronous reference frame (SRF) method is used to extract reference current in 4-leg shunt active filter. The Hysteresis Current Controller (HCC) is used to generate gate pulses for Voltage Source Inverter (VSI) based 4-leg shunt active power filter. The proposed PSO technique gives less percentage of Total Harmonic Distortion (THD) value in source and neutral current and settling time of the DC capacitor voltage compared to conventional PI controller technique. The model of the proposed system performance was validated using MATLAB/Simulink environment.
文摘We discuss a filter-based pattern search method for unconstrained optimization in this paper. For the purpose to broaden the search range we use both filter technique and frames, which are fragments of grids, to provide a new criterion of iterate acceptance. The convergence can be ensured under some conditions. The numerical result shows that this method is practical and efficient.
基金supported by the National Natural Science Foundation of China(No.12172076)。
文摘Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detection algorithm with limited computational resources,this study improves the detection performance in terms of optimized features and interference filtering.The accuracy of the algorithm is improved by refining the combination of gesture features using a self-constructed dataset,and biometric filtering is introduced to reduce the interference of inanimate object motion.Finally,experiments demonstrate the effectiveness of the proposed algorithm in both mitigating interference from inanimate objects and accurately recognizing gestures.Results show a notable 93.29%average reduction in false detections achieved through the integration of biometric filtering into the algorithm’s interpretation of target movements.Additionally,the algorithm adeptly identifies the six gestures with an average accuracy of 96.84%on embedded systems.
基金supported by National Natural Science Foundation of China (Nos.62265010,62061024)Gansu Province Science and Technology Plan (No.23YFGA0062)Gansu Province Innovation Fund (No.2022A-215)。
文摘A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively.