While renewable power generation and vehicle electrification are promising solutions to reduce greenhouse gas emissions, it faces great challenges to effectively integrate them in a power grid. The weather-dependent p...While renewable power generation and vehicle electrification are promising solutions to reduce greenhouse gas emissions, it faces great challenges to effectively integrate them in a power grid. The weather-dependent power generation of renewable energy sources, such as Photovoltaic (PV) arrays, could introduce significant intermittency to a power grid. Meanwhile, uncontrolled PEV charging may cause load surge in a power grid. This paper studies the optimization of PEV charging/discharging scheduling to reduce customer cost and improve grid performance. Optimization algorithms are developed for three cases: 1) minimize cost, 2) minimize power deviation from a pre-defined power profile, and 3) combine objective functions in 1) and 2). A Microgrid with PV arrays, bi-directional PEV charging stations, and a commercial building is used in this study. The bi-directional power from/to PEVs provides the opportunity of using PEVs to reduce the intermittency of PV power generation and the peak load of the Microgrid. Simulation has been performed for all three cases and the simulation results show that the presented optimization algorithms can meet defined objectives.展开更多
Microgrid as an important part of smart grid comprises distributed generators(DGs),adjustable loads,energy storage systems(ESSs)and control units.It can be operated either connected with the external system or islande...Microgrid as an important part of smart grid comprises distributed generators(DGs),adjustable loads,energy storage systems(ESSs)and control units.It can be operated either connected with the external system or islanded with the support of ESSs.While the daily output of DGs strongly depends on the temporal distribution of natural resources such as wind and solar,unregulated electric vehicle(EV)charging demand will deteriorate the unbalance between the daily load curve and generation curve.In this paper,a statistic model is presented to describe daily EV charging/discharging behaviors considering the randomness of the initial state of charge(SOC)of EV batteries.The optimization problem is proposed to obtain the economic operation for the microgrid based on this model.In dayahead scheduling,with the estimated power generation and load demand,the optimal charging/discharging scheduling of EVs during 24 h is achieved by serial quadratic programming.With the optimal charging/discharging scheduling of EVs,the daily load curve can better track the generation curve.The network loss in grid-connected operation mode and required ESS capacity in islanded operation mode are both decreased.展开更多
Background:The increasing penetration of a massive number of plug-in electric vehicles(PEVs)and distributed generators(DGs)into current power distribution networks imposes obvious challenges on power distribution netw...Background:The increasing penetration of a massive number of plug-in electric vehicles(PEVs)and distributed generators(DGs)into current power distribution networks imposes obvious challenges on power distribution network operation.Methods:This paper presents an optimal temporal-spatial scheduling strategy of PEV charging demand in the presence of DGs.The solution is designed to ensure the reliable and secure operation of the active power distribution networks,the randomness introduced by PEVs and DGs can be managed through the appropriate scheduling of the PEV charging demand,as the PEVs can be considered as mobile energy storage units.Results:As a result,the charging demands of PEVs are optimally scheduled temporally and spatially,which can improve the DG utilization efficiency as well as reduce the charging cost under real-time pricing(RTP).Conclusions:The proposed scheduling strategy is evaluated through a series of simulations and the numerical results demonstrate the effectiveness and the benefits of the proposed solution.展开更多
随着电动汽车(electric vehicle,EV)普及度的不断提高,工业园区内的EV用户日益增多,其充放电行为给园区综合能源系统(park integrated energy system,PIES)的规划运行带来极大挑战。文中提出考虑EV充放电意愿的PIES双层优化调度。首先,...随着电动汽车(electric vehicle,EV)普及度的不断提高,工业园区内的EV用户日益增多,其充放电行为给园区综合能源系统(park integrated energy system,PIES)的规划运行带来极大挑战。文中提出考虑EV充放电意愿的PIES双层优化调度。首先,基于动态实时电价、电池荷电量、电池损耗补偿、额外参与激励等因素建立充放电意愿模型,在此基础上得到改进的EV充放电模型;然后,以PIES总成本最小和EV充电费用最小为目标建立双层优化调度模型,通过Karush-Kuhn-Tucker(KKT)条件将内层模型转化为外层模型的约束条件,从而快速稳定地实现单层模型的求解;最后,进行仿真求解,设置3种不同场景,对比所提模型与一般充放电意愿模型,验证了文中所提引入EV充放电意愿模型的PIES双层优化调度的有效性和可行性。展开更多
针对传统电动汽车集群调度过程中未能充分考虑用户响应度及其影响因素对可调度容量影响的问题,提出了计及用户响应度的电动汽车充放电调度策略。首先基于用户出行数据,对电动汽车集群的充电负荷模型进行建模;其次建立了基于韦伯-费希纳...针对传统电动汽车集群调度过程中未能充分考虑用户响应度及其影响因素对可调度容量影响的问题,提出了计及用户响应度的电动汽车充放电调度策略。首先基于用户出行数据,对电动汽车集群的充电负荷模型进行建模;其次建立了基于韦伯-费希纳定律的电动汽车用户响应度模型,并综合考虑聚合商设定的充放电价和车辆荷电状态(state of charge,SOC)对用户充放电响应度的影响;最终将聚合商设定的充放电价与电动汽车的充放电功率作为决策变量,统筹考虑电网、聚合商以及电动汽车用户的三方收益,构建以最小化配电网负荷波动、最小化用户充电成本和最大化聚合商收益为目标的电动汽车充放电优化调度模型,采用粒子群优化算法(particle swarm optinization,PSO)求解该优化问题。通过算例结果表明,该模型能够在实现削峰填谷的同时,保证了聚合商以及电动汽车用户的利益。展开更多
文摘While renewable power generation and vehicle electrification are promising solutions to reduce greenhouse gas emissions, it faces great challenges to effectively integrate them in a power grid. The weather-dependent power generation of renewable energy sources, such as Photovoltaic (PV) arrays, could introduce significant intermittency to a power grid. Meanwhile, uncontrolled PEV charging may cause load surge in a power grid. This paper studies the optimization of PEV charging/discharging scheduling to reduce customer cost and improve grid performance. Optimization algorithms are developed for three cases: 1) minimize cost, 2) minimize power deviation from a pre-defined power profile, and 3) combine objective functions in 1) and 2). A Microgrid with PV arrays, bi-directional PEV charging stations, and a commercial building is used in this study. The bi-directional power from/to PEVs provides the opportunity of using PEVs to reduce the intermittency of PV power generation and the peak load of the Microgrid. Simulation has been performed for all three cases and the simulation results show that the presented optimization algorithms can meet defined objectives.
基金The research of this paper was supported by National Natural Science Foundation of China(No.51577032)Natural Science Foundation of Jiangsu Province(No.BK20160679)+1 种基金EPSRC UK-China joint research consortium(EP/F061242/1)Science bridge award(EP/G042594/1).
文摘Microgrid as an important part of smart grid comprises distributed generators(DGs),adjustable loads,energy storage systems(ESSs)and control units.It can be operated either connected with the external system or islanded with the support of ESSs.While the daily output of DGs strongly depends on the temporal distribution of natural resources such as wind and solar,unregulated electric vehicle(EV)charging demand will deteriorate the unbalance between the daily load curve and generation curve.In this paper,a statistic model is presented to describe daily EV charging/discharging behaviors considering the randomness of the initial state of charge(SOC)of EV batteries.The optimization problem is proposed to obtain the economic operation for the microgrid based on this model.In dayahead scheduling,with the estimated power generation and load demand,the optimal charging/discharging scheduling of EVs during 24 h is achieved by serial quadratic programming.With the optimal charging/discharging scheduling of EVs,the daily load curve can better track the generation curve.The network loss in grid-connected operation mode and required ESS capacity in islanded operation mode are both decreased.
基金The National Key Research and Development Program of China(Basic Research Class 2017YFB0903000)Basic Theories and Methods of Analysis and Control of the Cyber Physical Systems for Power Grid,and the Natural Science Foundation of Zhejiang Province(LZ15E070001).
文摘Background:The increasing penetration of a massive number of plug-in electric vehicles(PEVs)and distributed generators(DGs)into current power distribution networks imposes obvious challenges on power distribution network operation.Methods:This paper presents an optimal temporal-spatial scheduling strategy of PEV charging demand in the presence of DGs.The solution is designed to ensure the reliable and secure operation of the active power distribution networks,the randomness introduced by PEVs and DGs can be managed through the appropriate scheduling of the PEV charging demand,as the PEVs can be considered as mobile energy storage units.Results:As a result,the charging demands of PEVs are optimally scheduled temporally and spatially,which can improve the DG utilization efficiency as well as reduce the charging cost under real-time pricing(RTP).Conclusions:The proposed scheduling strategy is evaluated through a series of simulations and the numerical results demonstrate the effectiveness and the benefits of the proposed solution.
文摘随着电动汽车(electric vehicle,EV)普及度的不断提高,工业园区内的EV用户日益增多,其充放电行为给园区综合能源系统(park integrated energy system,PIES)的规划运行带来极大挑战。文中提出考虑EV充放电意愿的PIES双层优化调度。首先,基于动态实时电价、电池荷电量、电池损耗补偿、额外参与激励等因素建立充放电意愿模型,在此基础上得到改进的EV充放电模型;然后,以PIES总成本最小和EV充电费用最小为目标建立双层优化调度模型,通过Karush-Kuhn-Tucker(KKT)条件将内层模型转化为外层模型的约束条件,从而快速稳定地实现单层模型的求解;最后,进行仿真求解,设置3种不同场景,对比所提模型与一般充放电意愿模型,验证了文中所提引入EV充放电意愿模型的PIES双层优化调度的有效性和可行性。
文摘针对传统电动汽车集群调度过程中未能充分考虑用户响应度及其影响因素对可调度容量影响的问题,提出了计及用户响应度的电动汽车充放电调度策略。首先基于用户出行数据,对电动汽车集群的充电负荷模型进行建模;其次建立了基于韦伯-费希纳定律的电动汽车用户响应度模型,并综合考虑聚合商设定的充放电价和车辆荷电状态(state of charge,SOC)对用户充放电响应度的影响;最终将聚合商设定的充放电价与电动汽车的充放电功率作为决策变量,统筹考虑电网、聚合商以及电动汽车用户的三方收益,构建以最小化配电网负荷波动、最小化用户充电成本和最大化聚合商收益为目标的电动汽车充放电优化调度模型,采用粒子群优化算法(particle swarm optinization,PSO)求解该优化问题。通过算例结果表明,该模型能够在实现削峰填谷的同时,保证了聚合商以及电动汽车用户的利益。