Metallic zinc is an ideal anode material owing to its high theoretical capacity(819 mAh·g^(-1)),ecofriendliness,low cost and high safety,which have driven fast development of Zn-ion batteries(ZIBs).However,the pr...Metallic zinc is an ideal anode material owing to its high theoretical capacity(819 mAh·g^(-1)),ecofriendliness,low cost and high safety,which have driven fast development of Zn-ion batteries(ZIBs).However,the practical application of current ZIBs is significantly restricted by irregular dendrite growth of zinc anode and the low working voltage(usually<2 V)of cathode materials.Herein,we report a high-voltage Zn-based dualion battery(DIB),which is constructed by a graphite cathode,a Zn anode,and 3 M LiPF_(6)in the ethyl methyl carbonate(EMC)electrolyte.Under the corrosion interaction of Li^(+)ions,Zn^(2+)can be easily dissolved from Zn anode into the electrolyte to enable dendrite-free Zn^(2+)plating/stripping at the anode.Moreover,an aqueous carboxymethyl cellulose(CMC)binder is employed to generate a robust cathode electrolyte interface(CEI)layer on the graphite cathode,which renders ultrafast PF_(6)^(-)-de-/intercalation into graphite.The resultant Zn-graphite DIB operates stably at a high cut off voltage of 3.2 V,corresponding to an average output voltage of 2.2 V.After 9000cycles at 5C,the high capacity retention of 95.9% can be achieved with~100% Coulomb efficiency.Based on the mass of cathode material,our Zn-graphite battery exhibits ultrafast rate capability(60 C,a discharge time of 44 s)and high energy/power densities(208 Wh·kg^(-1)at 214 W·kg^(-1);142 Wh·kg^(-1)at 8692 W·kg^(-1)),which holds great promise for large-scale energy storage.展开更多
基金financially supported by the National Natural Science Foundation of China(No.22279122)Shenzhen Science and Technology Program(No.JCYJ20220530162402005)+2 种基金the Research on High Power Flexible Battery in All Sea Depth(2020-XXXX-XX-246-00)the Research Fund Program of Hubei Key Laboratory of Resources and EcoEnvironment Geology(No.HBREGKFJJ-202314)and the Fundamental Research Funds for the Central Universities,South-Central Minzu University(No.CZQ21013)。
文摘Metallic zinc is an ideal anode material owing to its high theoretical capacity(819 mAh·g^(-1)),ecofriendliness,low cost and high safety,which have driven fast development of Zn-ion batteries(ZIBs).However,the practical application of current ZIBs is significantly restricted by irregular dendrite growth of zinc anode and the low working voltage(usually<2 V)of cathode materials.Herein,we report a high-voltage Zn-based dualion battery(DIB),which is constructed by a graphite cathode,a Zn anode,and 3 M LiPF_(6)in the ethyl methyl carbonate(EMC)electrolyte.Under the corrosion interaction of Li^(+)ions,Zn^(2+)can be easily dissolved from Zn anode into the electrolyte to enable dendrite-free Zn^(2+)plating/stripping at the anode.Moreover,an aqueous carboxymethyl cellulose(CMC)binder is employed to generate a robust cathode electrolyte interface(CEI)layer on the graphite cathode,which renders ultrafast PF_(6)^(-)-de-/intercalation into graphite.The resultant Zn-graphite DIB operates stably at a high cut off voltage of 3.2 V,corresponding to an average output voltage of 2.2 V.After 9000cycles at 5C,the high capacity retention of 95.9% can be achieved with~100% Coulomb efficiency.Based on the mass of cathode material,our Zn-graphite battery exhibits ultrafast rate capability(60 C,a discharge time of 44 s)and high energy/power densities(208 Wh·kg^(-1)at 214 W·kg^(-1);142 Wh·kg^(-1)at 8692 W·kg^(-1)),which holds great promise for large-scale energy storage.