Plant growth-promoting rhizobacteria(PGPR)are specialized bacterial communities inhabiting the root rhizosphere and the secretion of root exudates helps to,regulate the microbial dynamics and their interactions with t...Plant growth-promoting rhizobacteria(PGPR)are specialized bacterial communities inhabiting the root rhizosphere and the secretion of root exudates helps to,regulate the microbial dynamics and their interactions with the plants.These bacteria viz.,Agrobacterium,Arthobacter,Azospirillum,Bacillus,Burkholderia,Flavobacterium,Pseudomonas,Rhizobium,etc.,play important role in plant growth promotion.In addition,such symbiotic associations of PGPRs in the rhizospheric region also confer protection against several diseases caused by bacterial,fungal and viral pathogens.The biocontrol mechanism utilized by PGPR includes direct and indirect mechanisms direct PGPR mechanisms include the production of antibiotic,siderophore,and hydrolytic enzymes,competition for space and nutrients,and quorum sensing whereas,indirect mechanisms include rhizomicrobiome regulation via.secretion of root exudates,phytostimulation through the release of phytohormones viz.,auxin,cytokinin,gibberellic acid,1-aminocyclopropane-1-carboxylate and induction of systemic resistance through expression of antioxidant defense enzymes viz.,phenylalanine ammonia lyase(PAL),peroxidase(PO),polyphenyloxidases(PPO),superoxide dismutase(SOD),chitinase andβ-glucanases.For the suppression of plant diseases potent bio inoculants can be developed by modulating the rhizomicrobiome through rhizospheric engineering.In addition,understandings of different strategies to improve PGPR strains,their competence,colonization efficiency,persistence and its future implications should also be taken into consideration.展开更多
Plant growth promoting pseudomonads play an important role in disease suppression and there is considerable interest in development of bio-marker genes that can be used to monitor these bacteria in agricultural soils....Plant growth promoting pseudomonads play an important role in disease suppression and there is considerable interest in development of bio-marker genes that can be used to monitor these bacteria in agricultural soils. Here, we report the application ofa PCR primer sets targeting genes encoding the main antibiotic groups. Distribution of the genes was variably distributed across type strains of 28 species with no phylogenetic groupingfor the detected antibioticsgenes, phlD for 2,4-diacetylphloroglucinol (2,4-DAPG) and phzCD for phenazine-1-carboxylic acid or hcnBC for hydrogen cyanide production. Analysis of field soils showed that primer sets for phlD and phzCD detected these genes in a fallowed neutral pH soil following wheat production, but that the copy numbers were below the detection limits in bulk soils having an acidic pH. In contrast, PCR products for the phzCD, pltc and hcnBc genes were detectable in mature root zones following plantingwith wheat. The ability to rapidly characterize populations of antibiotics producers using specific primer sets will improve our ability to assess the impacts of management practices on the functional traits of Pseudomonas spp. populations in agricultural soils.展开更多
Modern agriculture is facing new challenges in which ecological and molecular approaches are being integrated to achieve higher crop yields while minimizing negative impacts on the environment. The application of biof...Modern agriculture is facing new challenges in which ecological and molecular approaches are being integrated to achieve higher crop yields while minimizing negative impacts on the environment. The application of biofertilzers could meet this requirement. Biofertilizer is a natural organic fertilizer that helps to provide all the nutrients required by the plants and helps to increase the quality of the soil with a natural microorganism environment. This paper reviewed the types of biofertilzers, the biological basic of biofertilizers in plant growth promotion. This paper also assayed the bidirectional information exchange between plant-microbes in rhizoshpere and the signal pathway of plant growth- promoting rhizobacteria (PGPR) and plant growth-promoting fungi (PGPF) in the course of plant infection. At last, the challenges of the application and the promising future of biofertilizers were also discussed.展开更多
When exposed to biotic or abiotic stress conditions, plants produce ethylene from its immediate precursor 1-aminocyclopropane-1- carboxylate (ACC), leading to retarded root growth and senescence. Many plant growth-p...When exposed to biotic or abiotic stress conditions, plants produce ethylene from its immediate precursor 1-aminocyclopropane-1- carboxylate (ACC), leading to retarded root growth and senescence. Many plant growth-promoting rhizobacteria contain the enzyme ACC deaminase and this enzyme can cleave ACC to form a-ketobutyrate and ammonium, thereby lowering levels of ethylene. The aim of this study was to isolate and characterize ACC deaminase-producing bacteria from the rhizosphere of salt-stressed canola (Brassica napus L.). Out of 105 random bacterial isolates, 15 were able to utilize ACC as the sole source of nitrogen. These 15 isolates were also positive for indole acetic acid (IAA) production. Phylogenetic analysis based on partial 16S rDNA sequences showed that all isolates belonged to fluorescent Pseudomonas spp. In the canola rhizosphere investigated in this study, Pseudomonas fluorescens was the dominant ACC deaminase-producing species. Cluster analysis based on BOX-AIR-based repetitive extragenic palindromic-polymerase chain reaction (BOX-PCR) patterns suggested a high degree of genetic variability in ACC deaminase-producing P. fluorescens strains. The presence of indigenous ACC-degrading bacteria in the rhizosphere of canola grown in saline soils indicates that these bacteria may contribute to salinity tolerance.展开更多
Iron(Fe) bioavailability to plants is reduced in saline soils;however, the exact mechanisms underlying this effect are not yet completely understood. Siderophore-expressing rhizobacteria may represent a promising alte...Iron(Fe) bioavailability to plants is reduced in saline soils;however, the exact mechanisms underlying this effect are not yet completely understood. Siderophore-expressing rhizobacteria may represent a promising alternative to chemical fertilizers by simultaneously tackling salt-stress effects and Fe limitation in saline soils. In addition to draught, plants growing in arid soils face two other major challenges: high salinity and Fe deficiency. Salinity attenuates growth, affects plant physiology, and causes nutrient imbalance,which is, in fact, one of the major consequences of saline stress. Iron is a micronutrient essential for plant development, and it is required by several metalloenzymes involved in photosynthesis and respiration. Iron deficiency is associated with chlorosis and low crop productivity. The role of microbial siderophores in Fe supply to plants and the effect of plant growth-promoting rhizobacteria(PGPR) on the mitigation of saline stress in crop culture are well documented. However, the dual effect of siderophore-producing PGPR, both on salt stress and Fe limitation, is still poorly explored. This review provides a critical overview of the combined effects of Fe limitation and soil salinization as challenges to modern agriculture and intends to summarize some indirect evidence that argues in favour of siderophore-producing PGPR as biofertilization agents in salinized soils. Recent developments and future perspectives on the use of PGPR are discussed as clues to sustainable agricultural practices in the context of present and future climate change scenarios.展开更多
Enhancing the growth of alfalfa(Medicago sativa L.)through inoculation with rhizobacteria represents a sustainable strategy for reclaiming saline soils.However,the lack of suitable strains and practical application gu...Enhancing the growth of alfalfa(Medicago sativa L.)through inoculation with rhizobacteria represents a sustainable strategy for reclaiming saline soils.However,the lack of suitable strains and practical application guidelines poses significant challenges to the utilization of Plant Growth-Promoting Rhizobacteria(PGPR)in saltaffected soils of Northwest China.In this study,we selected four PGPR strains derived from indigenous halophytes based on their growth-promoting characteristics.These strains underwent further selection via a petri dish assay.Subsequently,the effects of the selected PGPR strains on alfalfa growth and soil fertility were rigorously examined through pot trials.The results demonstrated that Bacillus filamentosus HL3,B.filamentosus HL6,Bacillus subtilis subsp.stercoris HG12,and Paenibacillus peoriae HG24 significantly produced indole-3-acetic acid(IAA),solubilized phosphorus,and fixed nitrogen(except for B.filamentosus HL6,which did not significantly fix nitrogen).Compared to non-inoculated plants,B.filamentosus HL6 and B.subtilis subsp.stercoris HG12 significantly enhanced seed germination,root elongation,and seedling biomass in a 150 mmol/L NaCl saline solution.In saline-alkaline soils,PGPR inoculation under brackish water irrigation did not restore alfalfa growth to the levels observed under freshwater irrigation.Principal Component Analysis(PCA)condensed ten indicators into two indices,explaining 86.85%of the variance.Using these two indices as weights,an evaluation model for the PGPR-alfalfa symbiosis indicated that B.subtilis subsp.stercoris HG12 had the most substantial effect under freshwater irrigation,while co-inoculation with B.subtilis subsp.stercoris HG12 and B.filamentosus HL6 had the most significant impact on alfalfa growth and soil improvement under brackish water irrigation.Available phosphorus was identified as the primary factor influencing alfalfa growth,contributing 82.3%to the growth variation.These findings provide suitable microbial strains for the utilization of saline-alkali land and underscore the potential of applying indigenous PGPR-alfalfa symbiotic techniques to improve soil fertility and crop yield in the arid regions of Northwest China.展开更多
Plant growth-promoting rhizobacteria (PGPR) are considered to be the most promising agents for cash crop production via increasing crop yields and decreasing disease occurrence. The Bacillus amyloliquefaciens strain...Plant growth-promoting rhizobacteria (PGPR) are considered to be the most promising agents for cash crop production via increasing crop yields and decreasing disease occurrence. The Bacillus amyloliquefaciens strain W19 can produce secondary metabolites (iturin and bacillomycin D) effectively against Fusarium oxysporum f. sp. cubense (FOC). In this study, the ability of a bio-organic fertilizer (BIO) containing strain W19 to promote plant growth and suppress the Fusarium wilt of banana was evaluated in both pot and field experiments. The results showed that application of BIO significantly promoted the growth and fruit yield of banana while suppressing the banana Fusariurn wilt disease. To further determine the beneficial mechanisms of the strain, the colonization of green fluorescent protein-tagged strain W19 on banana roots was observed using confocal laser scanning microscopy and scanning electron microscopy. The effect of banana root exudates on the formation of biofilm of strain W19 indicated that the banana root exudates may enhance colonization. In addition, the strain W19 was able to produce indole-3-acetic acid (IAA), a plant growth-promoting hormone. The results of these experiments revealed that the application of strain W19-enriched BIO improved the banana root colonization of strain W19 and growth of banana and suppressed the Fusarium wilt. The PGPR strain W19 can be a useful biocontrol agent for the production of banana under field conditions.展开更多
Biosurfactants are biomolecules produced by microorganisms, low in toxicity, biodegradable, and relatively easy to synthesize using renewable waste substrates. Biosurfactants are of great importance with a wide and ve...Biosurfactants are biomolecules produced by microorganisms, low in toxicity, biodegradable, and relatively easy to synthesize using renewable waste substrates. Biosurfactants are of great importance with a wide and versatile range of applications, including the bioremediation of contaminated sites. Plants may accumulate soil potentially toxic elements(PTEs), and the accumulation efficacy may be further enhanced by the biosurfactants produced by rhizospheric microorganisms. Occasionally, the growth of bacteria slows down in adverse conditions, such as highly contaminated soils with PTEs. In this context,the plant's phytoextraction capacity could be improved by the addition of metal-tolerant bacteria that produce biosurfactants. Several sources, categories,and bioavailability of PTEs in soil are reported in this article, with the focus on the cost-effective and sustainable soil remediation technologies, where biosurfactants are used as a remediation method. How rhizobacterial biosurfactants can improve PTE recovery capabilities of plants is discussed, and the molecular mechanisms in bacterial genomes that support the production of important biosurfactants are listed. The status and cost of commercial biosurfactant production in the international market are also presented.展开更多
Legume plants are an essential component of sustainable farming systems.Phosphorus(P) deficiency is a significant constraint for legume production, especially in nutrient-poor soils of arid and semi-arid regions.In th...Legume plants are an essential component of sustainable farming systems.Phosphorus(P) deficiency is a significant constraint for legume production, especially in nutrient-poor soils of arid and semi-arid regions.In the present study, we conducted a pot experiment to evaluate the effects of a phosphorus-mobilizing plant-growth promoting rhizobacterial strain Bacillus cereus GS6, either alone or combined with phosphate-enriched compost(PEC) on the symbiotic(nodulation-N_2 fixation) performance of soybean(Glycine max(L.) Merr.) on an Aridisol.The PEC was produced by composting food waste with addition of single super phosphate.The bacterial strain B.cereus GS6 showed considerable potential for P solubilization and mobilization by releasing carboxylates in insoluble P(rock phosphate)-enriched medium.Inoculation of B.cereus GS6 in combination with PEC application significantly improved nodulation and nodule N_2 fixation efficiency.Compared to the control(without B.cereus GS6 and PEC), the combined application of B.cereus GS6 with PEC resulted in significantly higher accumulation of nitrogen(N), P, and potassium(K) in grain, shoot, and nodule.The N:P and P:K ratios in nodules were significantly altered by the application of PEC and B.cereus GS6, which reflected the important roles of P and K in symbiotic performance of soybean.The combined application of PEC and B.cereus GS6 also significantly increased the soil dehydrogenase and phosphomonoesterase activities, as well as the soil available N, P, and K contents.Significant positive relationships were found between soil organic carbon(C) content, dehydrogenase and phosphomonoesterase activities, and available N, P, and K contents.This study suggests that inoculation of P-mobilizing rhizobacteria, such as B.cereus GS6, in combination with PEC application might enhance legume productivity by improving nodulation and nodule N_2 fixation efficiency.展开更多
Soil salinity, which affects more than 6% of the earth’s land surface and more than 20% of its irrigated areas, is a major threat to agriculture. Diazotrophic bacteria are among the functional groups of soil microbio...Soil salinity, which affects more than 6% of the earth’s land surface and more than 20% of its irrigated areas, is a major threat to agriculture. Diazotrophic bacteria are among the functional groups of soil microbiota that are threatened by this abiotic stress, as their activity is mostly inhibited by salt stress. Seventy bacterial strains with distinct characteristics were isolated from soils by using N-free Jensen’s selective medium. Based on their ability to produce metabolites of agricultural interest, four strains were selected and identified as Flavobacterium johnsoniae, Pseudomonas putida, Achromobacter xylosoxidans, and Azotobacter chroococcum. The selected strains were grown at different NaCl concentrations (0–600 mmol L^(-1) in N-free broth and 0–2 000 mmol L^(-1) in Luria-Bertani medium) in the presence and absence of glycine betaine (GB), aqueous and hydro-alcoholic extracts from marine macroalgae, Ulva lactuca and Enteromorpha intestinalis, and Opuntia ficus-indica cladodes. The selected bacterial strains, GB, and the aforementioned extracts were tested for their ability to promote the germination of wheat (Triticum durum) seeds at 0–300 mmol L^(-1) NaCl. Compared with the results obtained with the synthetic osmoprotectant GB, the extracts from O. ficus-indica, U. lactuca, and E. intestinalis significantly promoted bacterial growth and seed germination under salt stress.展开更多
文摘Plant growth-promoting rhizobacteria(PGPR)are specialized bacterial communities inhabiting the root rhizosphere and the secretion of root exudates helps to,regulate the microbial dynamics and their interactions with the plants.These bacteria viz.,Agrobacterium,Arthobacter,Azospirillum,Bacillus,Burkholderia,Flavobacterium,Pseudomonas,Rhizobium,etc.,play important role in plant growth promotion.In addition,such symbiotic associations of PGPRs in the rhizospheric region also confer protection against several diseases caused by bacterial,fungal and viral pathogens.The biocontrol mechanism utilized by PGPR includes direct and indirect mechanisms direct PGPR mechanisms include the production of antibiotic,siderophore,and hydrolytic enzymes,competition for space and nutrients,and quorum sensing whereas,indirect mechanisms include rhizomicrobiome regulation via.secretion of root exudates,phytostimulation through the release of phytohormones viz.,auxin,cytokinin,gibberellic acid,1-aminocyclopropane-1-carboxylate and induction of systemic resistance through expression of antioxidant defense enzymes viz.,phenylalanine ammonia lyase(PAL),peroxidase(PO),polyphenyloxidases(PPO),superoxide dismutase(SOD),chitinase andβ-glucanases.For the suppression of plant diseases potent bio inoculants can be developed by modulating the rhizomicrobiome through rhizospheric engineering.In addition,understandings of different strategies to improve PGPR strains,their competence,colonization efficiency,persistence and its future implications should also be taken into consideration.
文摘Plant growth promoting pseudomonads play an important role in disease suppression and there is considerable interest in development of bio-marker genes that can be used to monitor these bacteria in agricultural soils. Here, we report the application ofa PCR primer sets targeting genes encoding the main antibiotic groups. Distribution of the genes was variably distributed across type strains of 28 species with no phylogenetic groupingfor the detected antibioticsgenes, phlD for 2,4-diacetylphloroglucinol (2,4-DAPG) and phzCD for phenazine-1-carboxylic acid or hcnBC for hydrogen cyanide production. Analysis of field soils showed that primer sets for phlD and phzCD detected these genes in a fallowed neutral pH soil following wheat production, but that the copy numbers were below the detection limits in bulk soils having an acidic pH. In contrast, PCR products for the phzCD, pltc and hcnBc genes were detectable in mature root zones following plantingwith wheat. The ability to rapidly characterize populations of antibiotics producers using specific primer sets will improve our ability to assess the impacts of management practices on the functional traits of Pseudomonas spp. populations in agricultural soils.
文摘Modern agriculture is facing new challenges in which ecological and molecular approaches are being integrated to achieve higher crop yields while minimizing negative impacts on the environment. The application of biofertilzers could meet this requirement. Biofertilizer is a natural organic fertilizer that helps to provide all the nutrients required by the plants and helps to increase the quality of the soil with a natural microorganism environment. This paper reviewed the types of biofertilzers, the biological basic of biofertilizers in plant growth promotion. This paper also assayed the bidirectional information exchange between plant-microbes in rhizoshpere and the signal pathway of plant growth- promoting rhizobacteria (PGPR) and plant growth-promoting fungi (PGPF) in the course of plant infection. At last, the challenges of the application and the promising future of biofertilizers were also discussed.
文摘When exposed to biotic or abiotic stress conditions, plants produce ethylene from its immediate precursor 1-aminocyclopropane-1- carboxylate (ACC), leading to retarded root growth and senescence. Many plant growth-promoting rhizobacteria contain the enzyme ACC deaminase and this enzyme can cleave ACC to form a-ketobutyrate and ammonium, thereby lowering levels of ethylene. The aim of this study was to isolate and characterize ACC deaminase-producing bacteria from the rhizosphere of salt-stressed canola (Brassica napus L.). Out of 105 random bacterial isolates, 15 were able to utilize ACC as the sole source of nitrogen. These 15 isolates were also positive for indole acetic acid (IAA) production. Phylogenetic analysis based on partial 16S rDNA sequences showed that all isolates belonged to fluorescent Pseudomonas spp. In the canola rhizosphere investigated in this study, Pseudomonas fluorescens was the dominant ACC deaminase-producing species. Cluster analysis based on BOX-AIR-based repetitive extragenic palindromic-polymerase chain reaction (BOX-PCR) patterns suggested a high degree of genetic variability in ACC deaminase-producing P. fluorescens strains. The presence of indigenous ACC-degrading bacteria in the rhizosphere of canola grown in saline soils indicates that these bacteria may contribute to salinity tolerance.
基金financially supported by Project PTDC/BIA-MIC/29736/2017funded by the European Regional Development Fund(FEDER)through COMPETE2020-Programa Operacional Competitividade e Internacionalizacao(POCI)and the Portuguese Foundation for Science and Technology(FCT/MCTES)by the Centre for Environmental and Marine Studies(CESAM,Portugal)(UID/AMB/50017-POCI-01-0145-FEDER-007638)
文摘Iron(Fe) bioavailability to plants is reduced in saline soils;however, the exact mechanisms underlying this effect are not yet completely understood. Siderophore-expressing rhizobacteria may represent a promising alternative to chemical fertilizers by simultaneously tackling salt-stress effects and Fe limitation in saline soils. In addition to draught, plants growing in arid soils face two other major challenges: high salinity and Fe deficiency. Salinity attenuates growth, affects plant physiology, and causes nutrient imbalance,which is, in fact, one of the major consequences of saline stress. Iron is a micronutrient essential for plant development, and it is required by several metalloenzymes involved in photosynthesis and respiration. Iron deficiency is associated with chlorosis and low crop productivity. The role of microbial siderophores in Fe supply to plants and the effect of plant growth-promoting rhizobacteria(PGPR) on the mitigation of saline stress in crop culture are well documented. However, the dual effect of siderophore-producing PGPR, both on salt stress and Fe limitation, is still poorly explored. This review provides a critical overview of the combined effects of Fe limitation and soil salinization as challenges to modern agriculture and intends to summarize some indirect evidence that argues in favour of siderophore-producing PGPR as biofertilization agents in salinized soils. Recent developments and future perspectives on the use of PGPR are discussed as clues to sustainable agricultural practices in the context of present and future climate change scenarios.
基金funded by the National Natural Science Foundation of China (No. 42107513)the Key Projects of Natural Science Foundation of Gansu Province (No. 22JR5RA051)+1 种基金the Key Research and Development Program of Gansu Province (No. 21YF5FA151)the Gansu Province science and Technology project (21JR7RA070)
文摘Enhancing the growth of alfalfa(Medicago sativa L.)through inoculation with rhizobacteria represents a sustainable strategy for reclaiming saline soils.However,the lack of suitable strains and practical application guidelines poses significant challenges to the utilization of Plant Growth-Promoting Rhizobacteria(PGPR)in saltaffected soils of Northwest China.In this study,we selected four PGPR strains derived from indigenous halophytes based on their growth-promoting characteristics.These strains underwent further selection via a petri dish assay.Subsequently,the effects of the selected PGPR strains on alfalfa growth and soil fertility were rigorously examined through pot trials.The results demonstrated that Bacillus filamentosus HL3,B.filamentosus HL6,Bacillus subtilis subsp.stercoris HG12,and Paenibacillus peoriae HG24 significantly produced indole-3-acetic acid(IAA),solubilized phosphorus,and fixed nitrogen(except for B.filamentosus HL6,which did not significantly fix nitrogen).Compared to non-inoculated plants,B.filamentosus HL6 and B.subtilis subsp.stercoris HG12 significantly enhanced seed germination,root elongation,and seedling biomass in a 150 mmol/L NaCl saline solution.In saline-alkaline soils,PGPR inoculation under brackish water irrigation did not restore alfalfa growth to the levels observed under freshwater irrigation.Principal Component Analysis(PCA)condensed ten indicators into two indices,explaining 86.85%of the variance.Using these two indices as weights,an evaluation model for the PGPR-alfalfa symbiosis indicated that B.subtilis subsp.stercoris HG12 had the most substantial effect under freshwater irrigation,while co-inoculation with B.subtilis subsp.stercoris HG12 and B.filamentosus HL6 had the most significant impact on alfalfa growth and soil improvement under brackish water irrigation.Available phosphorus was identified as the primary factor influencing alfalfa growth,contributing 82.3%to the growth variation.These findings provide suitable microbial strains for the utilization of saline-alkali land and underscore the potential of applying indigenous PGPR-alfalfa symbiotic techniques to improve soil fertility and crop yield in the arid regions of Northwest China.
基金supported by the National Natural Science Foundation of China (Nos. 31572212 and 31372142)the National Key Basic Research Program of China (No. 2015CB150503)+5 种基金the Chinese Ministry of Science and Technology (No. 2013AA102802)the Natural Science Foundation of Jiangsu Province, China (No. BK20150059)the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions of Chinathe 111 Project of China (No. B12009)the National Training Program of Innovation and Entrepreneurship for Undergraduates of China (No. 201410307089)the "Qing Lan" Project of China
文摘Plant growth-promoting rhizobacteria (PGPR) are considered to be the most promising agents for cash crop production via increasing crop yields and decreasing disease occurrence. The Bacillus amyloliquefaciens strain W19 can produce secondary metabolites (iturin and bacillomycin D) effectively against Fusarium oxysporum f. sp. cubense (FOC). In this study, the ability of a bio-organic fertilizer (BIO) containing strain W19 to promote plant growth and suppress the Fusarium wilt of banana was evaluated in both pot and field experiments. The results showed that application of BIO significantly promoted the growth and fruit yield of banana while suppressing the banana Fusariurn wilt disease. To further determine the beneficial mechanisms of the strain, the colonization of green fluorescent protein-tagged strain W19 on banana roots was observed using confocal laser scanning microscopy and scanning electron microscopy. The effect of banana root exudates on the formation of biofilm of strain W19 indicated that the banana root exudates may enhance colonization. In addition, the strain W19 was able to produce indole-3-acetic acid (IAA), a plant growth-promoting hormone. The results of these experiments revealed that the application of strain W19-enriched BIO improved the banana root colonization of strain W19 and growth of banana and suppressed the Fusarium wilt. The PGPR strain W19 can be a useful biocontrol agent for the production of banana under field conditions.
基金Dr. Dolikajytoti SHARMA from Gauhati University, India for the technical supportNanda Nath Saikia College, India for supporting this work。
文摘Biosurfactants are biomolecules produced by microorganisms, low in toxicity, biodegradable, and relatively easy to synthesize using renewable waste substrates. Biosurfactants are of great importance with a wide and versatile range of applications, including the bioremediation of contaminated sites. Plants may accumulate soil potentially toxic elements(PTEs), and the accumulation efficacy may be further enhanced by the biosurfactants produced by rhizospheric microorganisms. Occasionally, the growth of bacteria slows down in adverse conditions, such as highly contaminated soils with PTEs. In this context,the plant's phytoextraction capacity could be improved by the addition of metal-tolerant bacteria that produce biosurfactants. Several sources, categories,and bioavailability of PTEs in soil are reported in this article, with the focus on the cost-effective and sustainable soil remediation technologies, where biosurfactants are used as a remediation method. How rhizobacterial biosurfactants can improve PTE recovery capabilities of plants is discussed, and the molecular mechanisms in bacterial genomes that support the production of important biosurfactants are listed. The status and cost of commercial biosurfactant production in the international market are also presented.
基金financially supported by the Agricultural Linkages Programme (ALP) of Pakistan Agricultural Research Council (PARC) (ALP/PARC) (No.CS-268) on Microbial Biotechnology for Sustainable Production of LegumesProf.Dr.Zahir A.Zahir, Soil Microbiology & Biochemistry Laboratory, Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan, for providing financial and logistic support to carry out the present investigation
文摘Legume plants are an essential component of sustainable farming systems.Phosphorus(P) deficiency is a significant constraint for legume production, especially in nutrient-poor soils of arid and semi-arid regions.In the present study, we conducted a pot experiment to evaluate the effects of a phosphorus-mobilizing plant-growth promoting rhizobacterial strain Bacillus cereus GS6, either alone or combined with phosphate-enriched compost(PEC) on the symbiotic(nodulation-N_2 fixation) performance of soybean(Glycine max(L.) Merr.) on an Aridisol.The PEC was produced by composting food waste with addition of single super phosphate.The bacterial strain B.cereus GS6 showed considerable potential for P solubilization and mobilization by releasing carboxylates in insoluble P(rock phosphate)-enriched medium.Inoculation of B.cereus GS6 in combination with PEC application significantly improved nodulation and nodule N_2 fixation efficiency.Compared to the control(without B.cereus GS6 and PEC), the combined application of B.cereus GS6 with PEC resulted in significantly higher accumulation of nitrogen(N), P, and potassium(K) in grain, shoot, and nodule.The N:P and P:K ratios in nodules were significantly altered by the application of PEC and B.cereus GS6, which reflected the important roles of P and K in symbiotic performance of soybean.The combined application of PEC and B.cereus GS6 also significantly increased the soil dehydrogenase and phosphomonoesterase activities, as well as the soil available N, P, and K contents.Significant positive relationships were found between soil organic carbon(C) content, dehydrogenase and phosphomonoesterase activities, and available N, P, and K contents.This study suggests that inoculation of P-mobilizing rhizobacteria, such as B.cereus GS6, in combination with PEC application might enhance legume productivity by improving nodulation and nodule N_2 fixation efficiency.
文摘Soil salinity, which affects more than 6% of the earth’s land surface and more than 20% of its irrigated areas, is a major threat to agriculture. Diazotrophic bacteria are among the functional groups of soil microbiota that are threatened by this abiotic stress, as their activity is mostly inhibited by salt stress. Seventy bacterial strains with distinct characteristics were isolated from soils by using N-free Jensen’s selective medium. Based on their ability to produce metabolites of agricultural interest, four strains were selected and identified as Flavobacterium johnsoniae, Pseudomonas putida, Achromobacter xylosoxidans, and Azotobacter chroococcum. The selected strains were grown at different NaCl concentrations (0–600 mmol L^(-1) in N-free broth and 0–2 000 mmol L^(-1) in Luria-Bertani medium) in the presence and absence of glycine betaine (GB), aqueous and hydro-alcoholic extracts from marine macroalgae, Ulva lactuca and Enteromorpha intestinalis, and Opuntia ficus-indica cladodes. The selected bacterial strains, GB, and the aforementioned extracts were tested for their ability to promote the germination of wheat (Triticum durum) seeds at 0–300 mmol L^(-1) NaCl. Compared with the results obtained with the synthetic osmoprotectant GB, the extracts from O. ficus-indica, U. lactuca, and E. intestinalis significantly promoted bacterial growth and seed germination under salt stress.