期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于机器学习预测模型的现地警报级别地震预警试验——以2022年9月5日四川泸定6.8级地震为例
1
作者 宋晋东 朱景宝 +3 位作者 李水龙 王士成 韦永祥 李山有 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第8期3004-3016,共13页
2022年9月5日12时52分四川省甘孜州泸定县发生6.8级地震,造成严重的经济损失和人员伤亡.本文利用此次地震中台站记录到的强震动数据,离线模拟基于机器学习预测模型的现地警报级别地震预警方法.该方法首先构建基于支持向量机的震级预测... 2022年9月5日12时52分四川省甘孜州泸定县发生6.8级地震,造成严重的经济损失和人员伤亡.本文利用此次地震中台站记录到的强震动数据,离线模拟基于机器学习预测模型的现地警报级别地震预警方法.该方法首先构建基于支持向量机的震级预测模型与现地地震动速度峰值(peak ground velocity,PGV)预测模型,而后将每个台站的震级和PGV预测值分别与震级阈值5.7和PGV阈值9.12 cm·s^(-1)做比较,进而得到现地警报级别(0,1,2,3),并用于判断台站附近是否发生潜在破坏.其中,警报级别3为预测震级和预测PGV都超过了阈值,表明在该台站附近有潜在地震破坏且震级偏大.此次地震的离线模拟结果表明:使用P波到达后3 s时间窗,基于支持向量机震级预测模型的单台震级估计标准差为0.35、平均绝对误差为0.27;基于支持向量机PGV预测模型的现地PGV预测标准差为0.34、平均绝对误差为0.32;震级估计误差和PGV预测误差主要分布在±2倍标准差范围内.在不考虑数据打包与传输延时的条件下,地震烈度Ⅶ度区域内的触发台站在震后8 s几乎都发布了警报级别3.在此次地震的震后初期,基于机器学习预测模型的现地警报级别地震预警方法可以得到可靠的警报预测结果,并为中国地震预警系统升级提供了潜在参考. 展开更多
关键词 现地地震预警 机器学习 震级预测 pgv预测 泸定地震
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部