The effect of aging temperature on erosion corrosion (E-C) behavior of 17-4PH stainless steels in dilute sulphuric acid slurry containing solid particles was studied by using self-made rotating E-C apparatus. The ef...The effect of aging temperature on erosion corrosion (E-C) behavior of 17-4PH stainless steels in dilute sulphuric acid slurry containing solid particles was studied by using self-made rotating E-C apparatus. The effect of impact velocity on EC behavior of 17 4PH steels at different aging temperatures was analyzed. Surface micrographs of the specimens after E C test were observed by using scanning electron microscope (SEM). The results showed that under the condition of the same solution heat treatment, when aging temperature ranged from 400 ℃ to 610℃, the hardness reached the highest value near the temperature 460℃. The characteristics of E-C for 17-4PH stainless steels at different aging temperatures were as follows: pure erosion (wear) was dominant, corrosion was subordinate and at the same time corrosion promoted erosion. The effect of aging temperature on E-C rate of 17-4PH steels was not significant at low impact velocity, but it was found that E-C resistance of 17-4PH steels aged near 460℃ was the most excellent due to the best precipitation strengthening effect of fine and dispersed e-Cu phase. With a prerequisite of appropriate corrosion resistance, the precipitation hardening could significantly improve the E-C resistance of the materials.展开更多
Microstructure transformation and aging hardening behavior of 15-5 PH stainless steel were studied by optical microscopy (OM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show...Microstructure transformation and aging hardening behavior of 15-5 PH stainless steel were studied by optical microscopy (OM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the 15-5 PH stainless steel consists of NbC precipitates and lath matensite with a high dislocation density after solution treatment. With increasing aging temperature and aging time, the martensitic laths were resolved gradually. Meanwhile, the nanometric-sized Cu precipitates gradually coarsened and lost their coherency with'the martensite matrix, which exhibited an elliptical shape finally. Fine Cu precipitates can lead to significant dispersion hardening effect, while the coarsened Cu precipitates have no contribution to strengthening. The reversed austenite was observed in the speci- mens aged at 550 ℃ and above; moreover, the amount of reversed austenite increased as aging temperature in- creased. The precipitation hardening behavior of 15-5 PH stainless steel may depend on the balance between the softening caused by the formation of reversed austenite and the hardening caused by the precipitation of copper.展开更多
Solid solution nitriding technologies of 15Cr-7.5Mn-2.6Mo duplex stainless steel were investigated by using of orthogonal tests. The results show that the best technology would be the processes of 1050℃× 2h + 1...Solid solution nitriding technologies of 15Cr-7.5Mn-2.6Mo duplex stainless steel were investigated by using of orthogonal tests. The results show that the best technology would be the processes of 1050℃× 2h + 1150℃× 3h +1050℃× 2h + 1150℃× 4h under pure N2 with PN2=0.15MPa. The high nitrogen austenitic case with the depth of1.62mm can be obtained. Orthogonal tests show that the type of atmosphere has the most notable effect on solid solution nitriding process; the pressure in the furnace and the nitriding processes has a notable effect. X-ray diffraction analyses results indicate that the main phases in the cases of the solution-nitrided samples cooled in the furnace are high nitrogen austenite, CrN, Fe3O4 and nitrogen containing ferrite. In the other samples experienced solid solution nitriding and solution treatment the obtained phase in the cases is high nitrogen austenite only. The results show that solid solution nitriding is a process that nitrogen absolutely diffuses in the austenite. The diffusing activation energy in the conditions of PN2 = 0.15MPa and 1050℃~ 1200℃ is 186.6K J/mol.展开更多
The current status of nitrogen containing stainless steels at home and aboard has been introduced. The function and existing forms of nitrogen in the stainless steels, influence of nitrogen on mechanical properties an...The current status of nitrogen containing stainless steels at home and aboard has been introduced. The function and existing forms of nitrogen in the stainless steels, influence of nitrogen on mechanical properties and anti-corrosion properties as well as the application of nitrogen containing cast stainless steels were discussed in this paper. It is clear that nitrogen will be a potential and important alloying element in stainless steels. And Argon Oxygen Decarbonization (AOD) refining can provide an advanced manufacture process for nitrogen containing stainless steels with ultra-low- carbon and high cleanliness.展开更多
The stress corrosion cracking( SCC) behavior of PH13-8Mo precipitation hardening stainless steel( PHSS) in neutral NaCl solutions was investigated through slow-strain-rate tensile( SSRT) test at various applied ...The stress corrosion cracking( SCC) behavior of PH13-8Mo precipitation hardening stainless steel( PHSS) in neutral NaCl solutions was investigated through slow-strain-rate tensile( SSRT) test at various applied potentials. Fracture morphology,elongation ratio,and percentage reduction of area were measured to evaluate the SCC susceptibility. A critical concentration of 1. 0 mol / L neutral NaCl existed for SCC of PH13-8Mo steel. Significant SCC emerged when the applied potential was more negative than -0. 15 VSCE,and the SCC behavior was controlled by an anodic dissolution( AD) process.When the applied potential was lower than -0. 55 VSCE,an obvious hydrogen-fracture morphology was observed,which indicated that the SCC behavior was controlled by hydrogen-induced cracking( HIC).Between -0. 15 and -0. 35 VSCE,the applied potential exceeded the equilibrium hydrogen evolution potential in neutral NaCl solutions and the crack tips were of electrochemical origin in the anodic region; thus,the SCC process was dominated by the AD mechanism.展开更多
The solution-treated (ST) condition and aging precipitation behavior of 18Cr-16Mn-2Mo-1.1N high nitrogen austenitic stainless steel (HNS) were investigated by optical microscope (OM), scanning electron microscope (SEM...The solution-treated (ST) condition and aging precipitation behavior of 18Cr-16Mn-2Mo-1.1N high nitrogen austenitic stainless steel (HNS) were investigated by optical microscope (OM), scanning electron microscope (SEM), and transmission electron microscope (TEM). The results show that the ST condition of 18Cr-16Mn-2Mo-1.1N HNS with wN above 1% is identified as 1100 ℃ for 90 min, followed by water quenching to make sure the secondary phases completely dissolve into austenitic matrix and prevent the grains coarsening too much. Initial time-temperature-precipitation (TTP) curve of aged 18Cr-16Mn-2Mo-1.1N HNS which starts with precipitation of 0.05% in volume fraction is defined and the 'nose' temperature of precipitation is found to be 850 ℃ with an incubation period of 1 min. Hexagonal intergranular and cellular Cr2N with a=0.478 nm and c=0.444 nm precipitates gradually increase in the isothermal aging treatment. The matrix nitrogen depletion due to the intergranular and a few cellular Cr2N precipitates induces the decay of Vickers hardness, and the increment of cellular Cr2N causes the increase in the values. Impact toughness presents a monotonic decrease and SEM morphologies show the leading brittle intergranular fracture. The ultimate tensile strength (UTS), yield strength (YS) and elongation (El) deteriorate obviously. Stress concentration occurs when the matrix dislocations pile up at the interfaces of precipitation and matrix, and the interfacial dislocations may become precursors to the misfit dislocations, which can form small cleavage facets and accelerate the formation of cracks.展开更多
文摘The effect of aging temperature on erosion corrosion (E-C) behavior of 17-4PH stainless steels in dilute sulphuric acid slurry containing solid particles was studied by using self-made rotating E-C apparatus. The effect of impact velocity on EC behavior of 17 4PH steels at different aging temperatures was analyzed. Surface micrographs of the specimens after E C test were observed by using scanning electron microscope (SEM). The results showed that under the condition of the same solution heat treatment, when aging temperature ranged from 400 ℃ to 610℃, the hardness reached the highest value near the temperature 460℃. The characteristics of E-C for 17-4PH stainless steels at different aging temperatures were as follows: pure erosion (wear) was dominant, corrosion was subordinate and at the same time corrosion promoted erosion. The effect of aging temperature on E-C rate of 17-4PH steels was not significant at low impact velocity, but it was found that E-C resistance of 17-4PH steels aged near 460℃ was the most excellent due to the best precipitation strengthening effect of fine and dispersed e-Cu phase. With a prerequisite of appropriate corrosion resistance, the precipitation hardening could significantly improve the E-C resistance of the materials.
基金Item Sponsored by National High Technology Research and Development Program of China(2012AA03A507)Key Laboratory Foundation of Metal Material Microstructure Control of Jiangxi Province of China(JW201223001)Foundation of Jiangxi Educational Committee of China(GJJ14534)
文摘Microstructure transformation and aging hardening behavior of 15-5 PH stainless steel were studied by optical microscopy (OM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that the 15-5 PH stainless steel consists of NbC precipitates and lath matensite with a high dislocation density after solution treatment. With increasing aging temperature and aging time, the martensitic laths were resolved gradually. Meanwhile, the nanometric-sized Cu precipitates gradually coarsened and lost their coherency with'the martensite matrix, which exhibited an elliptical shape finally. Fine Cu precipitates can lead to significant dispersion hardening effect, while the coarsened Cu precipitates have no contribution to strengthening. The reversed austenite was observed in the speci- mens aged at 550 ℃ and above; moreover, the amount of reversed austenite increased as aging temperature in- creased. The precipitation hardening behavior of 15-5 PH stainless steel may depend on the balance between the softening caused by the formation of reversed austenite and the hardening caused by the precipitation of copper.
文摘Solid solution nitriding technologies of 15Cr-7.5Mn-2.6Mo duplex stainless steel were investigated by using of orthogonal tests. The results show that the best technology would be the processes of 1050℃× 2h + 1150℃× 3h +1050℃× 2h + 1150℃× 4h under pure N2 with PN2=0.15MPa. The high nitrogen austenitic case with the depth of1.62mm can be obtained. Orthogonal tests show that the type of atmosphere has the most notable effect on solid solution nitriding process; the pressure in the furnace and the nitriding processes has a notable effect. X-ray diffraction analyses results indicate that the main phases in the cases of the solution-nitrided samples cooled in the furnace are high nitrogen austenite, CrN, Fe3O4 and nitrogen containing ferrite. In the other samples experienced solid solution nitriding and solution treatment the obtained phase in the cases is high nitrogen austenite only. The results show that solid solution nitriding is a process that nitrogen absolutely diffuses in the austenite. The diffusing activation energy in the conditions of PN2 = 0.15MPa and 1050℃~ 1200℃ is 186.6K J/mol.
文摘The current status of nitrogen containing stainless steels at home and aboard has been introduced. The function and existing forms of nitrogen in the stainless steels, influence of nitrogen on mechanical properties and anti-corrosion properties as well as the application of nitrogen containing cast stainless steels were discussed in this paper. It is clear that nitrogen will be a potential and important alloying element in stainless steels. And Argon Oxygen Decarbonization (AOD) refining can provide an advanced manufacture process for nitrogen containing stainless steels with ultra-low- carbon and high cleanliness.
基金supported by the National Natural Science Foundation of China(No.51171023)the Fundamental Research Funds for the Central Universities(No.FRF-TP-14-011C1)+1 种基金National Basic Research Program of China(973 Program )(No.2014CB643300 )the Beijing Municipal Commission of Education
文摘The stress corrosion cracking( SCC) behavior of PH13-8Mo precipitation hardening stainless steel( PHSS) in neutral NaCl solutions was investigated through slow-strain-rate tensile( SSRT) test at various applied potentials. Fracture morphology,elongation ratio,and percentage reduction of area were measured to evaluate the SCC susceptibility. A critical concentration of 1. 0 mol / L neutral NaCl existed for SCC of PH13-8Mo steel. Significant SCC emerged when the applied potential was more negative than -0. 15 VSCE,and the SCC behavior was controlled by an anodic dissolution( AD) process.When the applied potential was lower than -0. 55 VSCE,an obvious hydrogen-fracture morphology was observed,which indicated that the SCC behavior was controlled by hydrogen-induced cracking( HIC).Between -0. 15 and -0. 35 VSCE,the applied potential exceeded the equilibrium hydrogen evolution potential in neutral NaCl solutions and the crack tips were of electrochemical origin in the anodic region; thus,the SCC process was dominated by the AD mechanism.
基金Item Sponsored by Key Program of National Science Foundation of China(50534010)Fundamental Research Funds for Central Universities of China(N100402015)
文摘The solution-treated (ST) condition and aging precipitation behavior of 18Cr-16Mn-2Mo-1.1N high nitrogen austenitic stainless steel (HNS) were investigated by optical microscope (OM), scanning electron microscope (SEM), and transmission electron microscope (TEM). The results show that the ST condition of 18Cr-16Mn-2Mo-1.1N HNS with wN above 1% is identified as 1100 ℃ for 90 min, followed by water quenching to make sure the secondary phases completely dissolve into austenitic matrix and prevent the grains coarsening too much. Initial time-temperature-precipitation (TTP) curve of aged 18Cr-16Mn-2Mo-1.1N HNS which starts with precipitation of 0.05% in volume fraction is defined and the 'nose' temperature of precipitation is found to be 850 ℃ with an incubation period of 1 min. Hexagonal intergranular and cellular Cr2N with a=0.478 nm and c=0.444 nm precipitates gradually increase in the isothermal aging treatment. The matrix nitrogen depletion due to the intergranular and a few cellular Cr2N precipitates induces the decay of Vickers hardness, and the increment of cellular Cr2N causes the increase in the values. Impact toughness presents a monotonic decrease and SEM morphologies show the leading brittle intergranular fracture. The ultimate tensile strength (UTS), yield strength (YS) and elongation (El) deteriorate obviously. Stress concentration occurs when the matrix dislocations pile up at the interfaces of precipitation and matrix, and the interfacial dislocations may become precursors to the misfit dislocations, which can form small cleavage facets and accelerate the formation of cracks.