The combined lines having both phKL and Ph2-deficiency were obtained in the genetic background of common wheat (Triticum aestivum L.) landrace. These lines had normal fertility. In the wheat combined lines X Aegilops ...The combined lines having both phKL and Ph2-deficiency were obtained in the genetic background of common wheat (Triticum aestivum L.) landrace. These lines had normal fertility. In the wheat combined lines X Aegilops variabilis Eig. (or rye), a significant increase in the chiasmata of homoeologous pairing was shown by the phKL+Ph2(-) plants with respect to their phKL+Ph2 sibs, which indicates that Ph2-deficiency and phKL showed an additive effect on promoting pairing. The effects were shown in the increment of rod bivalents, ring bivalents and trivalents and reduction of univalents, of which, reduction of univalents was mainly due to the increment of rod bivalents. The combined lines are probably more desirable materials for alien gene transferring than phKL or Ph2(-) lines alone. In comparison with that of ph1b X Ae. variabilis (or rye), phKL+Ph2(-) X Ae. variabilis (or rye) show higher (or similar) numbers of rod bivalents, while the total chromosome pairing level significantly reduced that ascribed to the decrement in ring bivalents and multivalents. These results probably indicate the different genetic mechanisms for Ph1 and Ph2 or phKL on controlling homoeologous pairing.展开更多
P chromosomes may carry a genetic system that inhibits the Ph gene in wheat. Abnormal chromosome synapsis in wheat-Agropyron cristatum addition line II-21-2 (additional 1·4 recombinant P chromosome) was observed ...P chromosomes may carry a genetic system that inhibits the Ph gene in wheat. Abnormal chromosome synapsis in wheat-Agropyron cristatum addition line II-21-2 (additional 1·4 recombinant P chromosome) was observed in this study. The results of cytogenetics and Ph1 gene amplification showed that the Ph1 gene was normal and the average number of quadrivalents or hexavalents was determined to be 0.41 and 0.13, respectively, in pollen-mother cells of wheat-Agropyron cristatum addition line II-21-2. The analysis of dual-color GISH/FISH showed that the P chromosomes were not directly involved in the composition of multivalents but could inhibit the effect of the Ph gene, leading to synapsis of wheat homoeologous chromosomes and translocation between wheat homoeologous chromosomes such as 3B-3D chromosomes. The characteristic of P chromosomes’ promoting synapsis of wheat homoeologous chromosomes may have potential application in the genetic improvement of wheat.展开更多
文摘The combined lines having both phKL and Ph2-deficiency were obtained in the genetic background of common wheat (Triticum aestivum L.) landrace. These lines had normal fertility. In the wheat combined lines X Aegilops variabilis Eig. (or rye), a significant increase in the chiasmata of homoeologous pairing was shown by the phKL+Ph2(-) plants with respect to their phKL+Ph2 sibs, which indicates that Ph2-deficiency and phKL showed an additive effect on promoting pairing. The effects were shown in the increment of rod bivalents, ring bivalents and trivalents and reduction of univalents, of which, reduction of univalents was mainly due to the increment of rod bivalents. The combined lines are probably more desirable materials for alien gene transferring than phKL or Ph2(-) lines alone. In comparison with that of ph1b X Ae. variabilis (or rye), phKL+Ph2(-) X Ae. variabilis (or rye) show higher (or similar) numbers of rod bivalents, while the total chromosome pairing level significantly reduced that ascribed to the decrement in ring bivalents and multivalents. These results probably indicate the different genetic mechanisms for Ph1 and Ph2 or phKL on controlling homoeologous pairing.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2006AA10Z174)the National Key Technology Research and Development Program of China (Grant No.2006BAD13B02)
文摘P chromosomes may carry a genetic system that inhibits the Ph gene in wheat. Abnormal chromosome synapsis in wheat-Agropyron cristatum addition line II-21-2 (additional 1·4 recombinant P chromosome) was observed in this study. The results of cytogenetics and Ph1 gene amplification showed that the Ph1 gene was normal and the average number of quadrivalents or hexavalents was determined to be 0.41 and 0.13, respectively, in pollen-mother cells of wheat-Agropyron cristatum addition line II-21-2. The analysis of dual-color GISH/FISH showed that the P chromosomes were not directly involved in the composition of multivalents but could inhibit the effect of the Ph gene, leading to synapsis of wheat homoeologous chromosomes and translocation between wheat homoeologous chromosomes such as 3B-3D chromosomes. The characteristic of P chromosomes’ promoting synapsis of wheat homoeologous chromosomes may have potential application in the genetic improvement of wheat.