Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The si...Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The similar and dissimilar metal welds made in solutionized condition were subjected to standard post weld hardening treatments direct ageing at 485 ℃, soaking for 31/2 hours followed by air cooling(ageing treatment of maraging steel) and direct ageing at 510 ℃, soaking for 4 h followed by air cooling(ageing treatment of 13-8 Mo stainless steel). The joint characterization studies include microstructure examination, microhardness survey across the weldments and transverse weld tensile test.Similar and dissimilar metal weldments responded to both the post weld ageing treatment. After post weld aging, increase in yield strength, UTS and slight reduction in % elongation of similar and dissimilar metal were observed. The observed tensile properties were correlated with microstructure and hardness distribution across the welds.展开更多
The stress corrosion cracking( SCC) behavior of PH13-8Mo precipitation hardening stainless steel( PHSS) in neutral NaCl solutions was investigated through slow-strain-rate tensile( SSRT) test at various applied ...The stress corrosion cracking( SCC) behavior of PH13-8Mo precipitation hardening stainless steel( PHSS) in neutral NaCl solutions was investigated through slow-strain-rate tensile( SSRT) test at various applied potentials. Fracture morphology,elongation ratio,and percentage reduction of area were measured to evaluate the SCC susceptibility. A critical concentration of 1. 0 mol / L neutral NaCl existed for SCC of PH13-8Mo steel. Significant SCC emerged when the applied potential was more negative than -0. 15 VSCE,and the SCC behavior was controlled by an anodic dissolution( AD) process.When the applied potential was lower than -0. 55 VSCE,an obvious hydrogen-fracture morphology was observed,which indicated that the SCC behavior was controlled by hydrogen-induced cracking( HIC).Between -0. 15 and -0. 35 VSCE,the applied potential exceeded the equilibrium hydrogen evolution potential in neutral NaCl solutions and the crack tips were of electrochemical origin in the anodic region; thus,the SCC process was dominated by the AD mechanism.展开更多
The effect of solution pH,Cl;concentration and temperature on the electrochemical corrosion behavior of PH13-8Mo steel in acidic solution was investigated by using the electrochemical tests,scanning electron microscop...The effect of solution pH,Cl;concentration and temperature on the electrochemical corrosion behavior of PH13-8Mo steel in acidic solution was investigated by using the electrochemical tests,scanning electron microscopy and X-ray photoelectron spectroscopy.The PH13-8Mo martensitic precipitation hardened stainless steel is in the passivity state when the pH value is above 3.0,below which the anodic polarization curves of the steel are actively dissolved.The corrosion current density gradually decreases with increasing the solution pH and decreasing Cl;concentration and solution temperature.Pits are initiated on the sample surface in the presence of the Cl;and gradually developed into uniform corrosion with increasing the Cl;concentrations.Moreover,the corrosion is more serious with an increase in solution temperature.展开更多
基金Financial assistance from Defence Research and Development Organisation
文摘Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The similar and dissimilar metal welds made in solutionized condition were subjected to standard post weld hardening treatments direct ageing at 485 ℃, soaking for 31/2 hours followed by air cooling(ageing treatment of maraging steel) and direct ageing at 510 ℃, soaking for 4 h followed by air cooling(ageing treatment of 13-8 Mo stainless steel). The joint characterization studies include microstructure examination, microhardness survey across the weldments and transverse weld tensile test.Similar and dissimilar metal weldments responded to both the post weld ageing treatment. After post weld aging, increase in yield strength, UTS and slight reduction in % elongation of similar and dissimilar metal were observed. The observed tensile properties were correlated with microstructure and hardness distribution across the welds.
基金supported by the National Natural Science Foundation of China(No.51171023)the Fundamental Research Funds for the Central Universities(No.FRF-TP-14-011C1)+1 种基金National Basic Research Program of China(973 Program )(No.2014CB643300 )the Beijing Municipal Commission of Education
文摘The stress corrosion cracking( SCC) behavior of PH13-8Mo precipitation hardening stainless steel( PHSS) in neutral NaCl solutions was investigated through slow-strain-rate tensile( SSRT) test at various applied potentials. Fracture morphology,elongation ratio,and percentage reduction of area were measured to evaluate the SCC susceptibility. A critical concentration of 1. 0 mol / L neutral NaCl existed for SCC of PH13-8Mo steel. Significant SCC emerged when the applied potential was more negative than -0. 15 VSCE,and the SCC behavior was controlled by an anodic dissolution( AD) process.When the applied potential was lower than -0. 55 VSCE,an obvious hydrogen-fracture morphology was observed,which indicated that the SCC behavior was controlled by hydrogen-induced cracking( HIC).Between -0. 15 and -0. 35 VSCE,the applied potential exceeded the equilibrium hydrogen evolution potential in neutral NaCl solutions and the crack tips were of electrochemical origin in the anodic region; thus,the SCC process was dominated by the AD mechanism.
基金financially sponsored by the National Basic Research Program of China(2014CB643306)
文摘The effect of solution pH,Cl;concentration and temperature on the electrochemical corrosion behavior of PH13-8Mo steel in acidic solution was investigated by using the electrochemical tests,scanning electron microscopy and X-ray photoelectron spectroscopy.The PH13-8Mo martensitic precipitation hardened stainless steel is in the passivity state when the pH value is above 3.0,below which the anodic polarization curves of the steel are actively dissolved.The corrosion current density gradually decreases with increasing the solution pH and decreasing Cl;concentration and solution temperature.Pits are initiated on the sample surface in the presence of the Cl;and gradually developed into uniform corrosion with increasing the Cl;concentrations.Moreover,the corrosion is more serious with an increase in solution temperature.