Absorption spectra of jet-cooled PH2 radicals were recorded in the wavelength range of 465- 555 nm using cavity ringdown spectroscopy. The PH2 radicals were produced in a supersonic jet by pulsed direct current discha...Absorption spectra of jet-cooled PH2 radicals were recorded in the wavelength range of 465- 555 nm using cavity ringdown spectroscopy. The PH2 radicals were produced in a supersonic jet by pulsed direct current discharge of a mixture of PHa and SF6 in argon. Seven vibronic bands with fine rotational structures have been observed and assigned as 0 0^, 2 0^n, and 2 1^n (n=1- 3) bands of the A^2A1- X~ 2B1 electronic transition. Rotational assignments and rotational term values for each band were re-identified, and the molecular parameters including rotational constants, centrifugal distortion constants, and spin-rotation interaction constants were also improved with reasonably high precision. In addition, large perturbations observed in each quantum number of total angular momentum of the a axis level of the excited vibronic states were briefly discussed.展开更多
Skin cancer has been recognized as one of the most lethal and complex types of cancer for over a decade.The diagnosis of skin cancer is of paramount importance,yet the process is intricate and challenging.The analysis...Skin cancer has been recognized as one of the most lethal and complex types of cancer for over a decade.The diagnosis of skin cancer is of paramount importance,yet the process is intricate and challenging.The analysis and modeling of human skin pose significant difficulties due to its asymmetrical nature,the visibility of dense hair,and the presence of various substitute characteristics.The texture of the epidermis is notably different from that of normal skin,and these differences are often evident in cases of unhealthy skin.As a consequence,the development of an effective method for monitoring skin cancer has seen little progress.Moreover,the task of diagnosing skin cancer from dermoscopic images is particularly challenging.It is crucial to diagnose skin cancer at an early stage,despite the high cost associated with the procedure,as it is an expensive process.Unfortunately,the advancement of diagnostic techniques for skin cancer has been limited.To address this issue,there is a need for a more accurate and efficient method for identifying and categorizing skin cancer cases.This involves the evaluation of specific characteristics to distinguish between benign and malignant skin cancer occurrences.We present and evaluate several techniques for segmentation,categorized into three main types:thresholding,edge-based,and region-based.These techniques are applied to a dataset of 200 benign and melanoma lesions from the Hospital Pedro Hispano(PH2)collection.The evaluation is based on twelve distinct metrics,which are designed to measure various types of errors with particular clinical significance.Additionally,we assess the effectiveness of these techniques independently for three different types of lesions:melanocytic nevi,atypical nevi,and melanomas.The first technique is capable of classifying lesions into two categories:atypical nevi and melanoma,achieving the highest accuracy score of 90.00%with the Otsu(3-level)method.The second technique also classifies lesions into two categories:common nevi and melanoma,achieving a score of 90.80%with the Binarized Sauvola method.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.20673107), the National Key Basic Research Special Foundation of China (No.2007CB815203), and the Chinese Academy of Sciences (No.KJCX2-SW-H08).
文摘Absorption spectra of jet-cooled PH2 radicals were recorded in the wavelength range of 465- 555 nm using cavity ringdown spectroscopy. The PH2 radicals were produced in a supersonic jet by pulsed direct current discharge of a mixture of PHa and SF6 in argon. Seven vibronic bands with fine rotational structures have been observed and assigned as 0 0^, 2 0^n, and 2 1^n (n=1- 3) bands of the A^2A1- X~ 2B1 electronic transition. Rotational assignments and rotational term values for each band were re-identified, and the molecular parameters including rotational constants, centrifugal distortion constants, and spin-rotation interaction constants were also improved with reasonably high precision. In addition, large perturbations observed in each quantum number of total angular momentum of the a axis level of the excited vibronic states were briefly discussed.
文摘Skin cancer has been recognized as one of the most lethal and complex types of cancer for over a decade.The diagnosis of skin cancer is of paramount importance,yet the process is intricate and challenging.The analysis and modeling of human skin pose significant difficulties due to its asymmetrical nature,the visibility of dense hair,and the presence of various substitute characteristics.The texture of the epidermis is notably different from that of normal skin,and these differences are often evident in cases of unhealthy skin.As a consequence,the development of an effective method for monitoring skin cancer has seen little progress.Moreover,the task of diagnosing skin cancer from dermoscopic images is particularly challenging.It is crucial to diagnose skin cancer at an early stage,despite the high cost associated with the procedure,as it is an expensive process.Unfortunately,the advancement of diagnostic techniques for skin cancer has been limited.To address this issue,there is a need for a more accurate and efficient method for identifying and categorizing skin cancer cases.This involves the evaluation of specific characteristics to distinguish between benign and malignant skin cancer occurrences.We present and evaluate several techniques for segmentation,categorized into three main types:thresholding,edge-based,and region-based.These techniques are applied to a dataset of 200 benign and melanoma lesions from the Hospital Pedro Hispano(PH2)collection.The evaluation is based on twelve distinct metrics,which are designed to measure various types of errors with particular clinical significance.Additionally,we assess the effectiveness of these techniques independently for three different types of lesions:melanocytic nevi,atypical nevi,and melanomas.The first technique is capable of classifying lesions into two categories:atypical nevi and melanoma,achieving the highest accuracy score of 90.00%with the Otsu(3-level)method.The second technique also classifies lesions into two categories:common nevi and melanoma,achieving a score of 90.80%with the Binarized Sauvola method.