In engineering projects associated with rock mechanic science like open pit mines, assessment and slope stability of mine walls is one of the important performance in generate of these structures. Estimating and knowl...In engineering projects associated with rock mechanic science like open pit mines, assessment and slope stability of mine walls is one of the important performance in generate of these structures. Estimating and knowledge of stable slope angle is one of main parts that should be occurring to special attention in open pit mines studies phase. Considering the importance of economic costs in mining issues, the need for appropriate design slope angle that can cause an adverse minimize project costs and throws the other hand, the stability conditions in the safe walls of the mine life will provide essential and seems obvious. Therefore, in this study to determine the optimal slope angle of overall and bench of west wall of the Chadormalu ore iron mine, has been trying, first, done field studies on the discontinuity of western wall, engineering classification and geomechanical properties of rock masses of wall, then assess the amount of optimal slope angle using empirical method. Finally, in order to ensure stability and accuracy of the wall slope angle based on the obtained (empirical method) tries to analysis is amount of Factor of Safety (FOS), displacements and mean stress condition atwalls calculated from drilling use Phase2D powerful software.展开更多
In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from ...In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from the Central Appalachian region is used as a case study.At this mine,unexpected roof conditions were encountered during development below previously mined panels.Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels.Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries.The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations.The SRM-calculated stability factors were compared with observations made during the site visits,and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case.It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines.展开更多
Two-dimensional Dion–Jacobson(D-J)phase perovskites are prospective photovoltaic and optoelectronic materials.To study their mechanical properties and carrier-lattice interactions,we conduct femtosecond spectroscopic...Two-dimensional Dion–Jacobson(D-J)phase perovskites are prospective photovoltaic and optoelectronic materials.To study their mechanical properties and carrier-lattice interactions,we conduct femtosecond spectroscopic experiments on the films of a D-J perovskite.After optical excitation,a∼33 meV bandgap oscillation is observed in the film by transient absorption spectroscopy.With the help of transient reflection methods,we reveal that the oscillation originates from the transport of coherent longitudinal acoustic phonons through the film.Large bandgap oscillation indicates a strong coupling between carriers and lattice,and significant bandgap modulation by strains in D-J perovskites.展开更多
Currently,most two-dimensional(2D)materials that are of interest to emergent applications have focused on van der Waals–layered materials(VLMs)because of the ease with which the layers can be separated(e.g.,graphene)...Currently,most two-dimensional(2D)materials that are of interest to emergent applications have focused on van der Waals–layered materials(VLMs)because of the ease with which the layers can be separated(e.g.,graphene).Strong interlayer-bonding-layered materials(SLMs)in general have not been thoroughly explored,and one of the most critical present issues is the huge challenge of their preparation,although their physicochemical proper-ty transformation should be richer than VLMs and deserves greater attention.MAX phases are a classi-cal kind of SLM.展开更多
In this study, the evolution of C60F18 molecules on a Cu(001) surface was studied by means of scanning tunneling microscopy and density functional theory calculations. The results showed that fluorinated fuUerenes ...In this study, the evolution of C60F18 molecules on a Cu(001) surface was studied by means of scanning tunneling microscopy and density functional theory calculations. The results showed that fluorinated fuUerenes (tortoise-shaped polar C60F18) decay on Cu(001) surfaces by a step-by-step detachment of F atoms from the C60 cage. The most favorable adsorption configuration was realized when the F atoms of C60F18 pointed towards the Cu surface and six F atoms were detached from it. The results also showed that a further decay of C60F12 molecules strongly depended on the initial C60F18 coverage. The detached F atoms initially formed a two-dimensional (2D) gas phase which then slowly transformed into F-induced surface structures. The degree of contact between the C60F12 molecules and the Cu(001) surface depended on the density of the 2D gas phase. Hence, the life-time of fluorinated fullerenes was determined by the density of the 2D gas phase, which was affected by the formation of new F-induced structures and the decay of C60F12 molecules.展开更多
文摘In engineering projects associated with rock mechanic science like open pit mines, assessment and slope stability of mine walls is one of the important performance in generate of these structures. Estimating and knowledge of stable slope angle is one of main parts that should be occurring to special attention in open pit mines studies phase. Considering the importance of economic costs in mining issues, the need for appropriate design slope angle that can cause an adverse minimize project costs and throws the other hand, the stability conditions in the safe walls of the mine life will provide essential and seems obvious. Therefore, in this study to determine the optimal slope angle of overall and bench of west wall of the Chadormalu ore iron mine, has been trying, first, done field studies on the discontinuity of western wall, engineering classification and geomechanical properties of rock masses of wall, then assess the amount of optimal slope angle using empirical method. Finally, in order to ensure stability and accuracy of the wall slope angle based on the obtained (empirical method) tries to analysis is amount of Factor of Safety (FOS), displacements and mean stress condition atwalls calculated from drilling use Phase2D powerful software.
文摘In this paper,the advantage of using numerical models with the strength reduction method(SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated.A coal mine under variable topography from the Central Appalachian region is used as a case study.At this mine,unexpected roof conditions were encountered during development below previously mined panels.Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels.Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries.The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations.The SRM-calculated stability factors were compared with observations made during the site visits,and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case.It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines.
基金supported by the Ministry of Science and Technology(No.2018YFA0208704)the National Natural Science Foundation of China(No.22173096).
文摘Two-dimensional Dion–Jacobson(D-J)phase perovskites are prospective photovoltaic and optoelectronic materials.To study their mechanical properties and carrier-lattice interactions,we conduct femtosecond spectroscopic experiments on the films of a D-J perovskite.After optical excitation,a∼33 meV bandgap oscillation is observed in the film by transient absorption spectroscopy.With the help of transient reflection methods,we reveal that the oscillation originates from the transport of coherent longitudinal acoustic phonons through the film.Large bandgap oscillation indicates a strong coupling between carriers and lattice,and significant bandgap modulation by strains in D-J perovskites.
基金This research was supported by the National Natural Science Foundation of China(21673161 and 21473124)the Sino-German Center for Research Promotion(1400)STEM characterization was conducted at the Center for Nanophase Materials Sciences,which is a DOE Office of Science User Facility.Work at Jilin University is supported by the Recruitment Program of Global Youth Experts in China and National Natural Science Founda-tion of China(11404131 and 11674121).
文摘Currently,most two-dimensional(2D)materials that are of interest to emergent applications have focused on van der Waals–layered materials(VLMs)because of the ease with which the layers can be separated(e.g.,graphene).Strong interlayer-bonding-layered materials(SLMs)in general have not been thoroughly explored,and one of the most critical present issues is the huge challenge of their preparation,although their physicochemical proper-ty transformation should be richer than VLMs and deserves greater attention.MAX phases are a classi-cal kind of SLM.
文摘In this study, the evolution of C60F18 molecules on a Cu(001) surface was studied by means of scanning tunneling microscopy and density functional theory calculations. The results showed that fluorinated fuUerenes (tortoise-shaped polar C60F18) decay on Cu(001) surfaces by a step-by-step detachment of F atoms from the C60 cage. The most favorable adsorption configuration was realized when the F atoms of C60F18 pointed towards the Cu surface and six F atoms were detached from it. The results also showed that a further decay of C60F12 molecules strongly depended on the initial C60F18 coverage. The detached F atoms initially formed a two-dimensional (2D) gas phase which then slowly transformed into F-induced surface structures. The degree of contact between the C60F12 molecules and the Cu(001) surface depended on the density of the 2D gas phase. Hence, the life-time of fluorinated fullerenes was determined by the density of the 2D gas phase, which was affected by the formation of new F-induced structures and the decay of C60F12 molecules.